1266: [AHOI2006]上学路线route Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 2490  Solved: 898[Submit][Status][Discuss] Description 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可:“很可能我们在上学的路途上浪费了大量的时间,让我们写一个程序来计算上…
题意:      给你一个平面图,让你输出(1,1),(n ,n)的最小割.. 思路:       看完题想都没想直接最大流,结果TLE,想想也是 G<400*400,400*400*4>,这样的图超时不冤枉,后来在网上看了题解,都说是什么论文题目,果断去看论文结果没看懂,后来看了下别人的理解,自己再画画图大概知道是什么意思了,果断是看着没有证明的证明容易懂啊..  把最小割转换成最短路是有限制条件的,就是这个图首先必须是平面图,然后要求的这两个点还必须是平面图最外侧的点,给你图解就明白了,感…
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Tricks Device Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 375    Accepted Submission(s): 98 Problem Description Innocent Wu follows Dumb Zh…
原题传送门http://www.lydsy.com/JudgeOnline/problem.php?id=1001 整理了下之前A的题 平面图可以转化成对偶图,然后(NlogN)的可以求出图的最小割(最大流) 算法合集有具体的讲解,有兴趣的可以在网上搜下或者向我要(QQ30056882) /************************************************************** Problem: User: BLADEVIL Language: Pascal…
题意:动物要逃跑,工作人员要截断从START(左上角)到END(右下角)的道路,每条边权表示拦截该条道路需要多少工作人员.问最少需要多少人才能完成拦截. 通俗地讲,就是把图一分为二所造成消耗的最小值. 这里用最短路的方法解,主要是因为数据量太大,不能用最小割最大流还处理. 手动画一下这种“割”的形式,发现是从一条边到另一条边,即以边为“点”,在边与边之间见“边”,边上的权值为终点v(其实是一条边)的权值.(本来想直接用点权处理的,可coding的时候发现SPFA中的入队出队操作太繁琐,老老实实改…
Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2098    Accepted Submission(s): 616 Problem Description The empire is under attack again. The general of empire is planning to defend hi…
[题意]给出一个无向图,每个点有一个标号mark[i],不同点可能有相同的标号.对于一条边(u, v),它的权值定义为mark[u] xor mark[v].现在一些点的标号已定,请决定剩下点的标号,使得总的边权和最小.(0 < N <= 500, 0 <= M <= 3000, 0 <= mark[i] <= 2^31-1) 胡伯涛神牛<最小割模型在信息学竞赛中的应用>中的例题.非常好的一道题!非常推荐! [思路] 我们把问题数学化就是:  Minimum…
题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每个负点到t建边,容量为损失的绝对值.其他关系边容量正向无穷,反向0.正数点总和减去最小割即为最大权闭合图答案.因为残余网络不会对0流边处理,所以不会将0流点选入取点集,所以最小割的取法中为被选中的点. 最大权闭合图的求解方法: 先构造网络流N,添加源点s,从s到正权值点做一条边,容量为点的权值. 添…
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 题意: 思路:这道题目是最小割题目,但是吧你直接套用Dinic是会超时的. 这里有种很奇妙的做法啊,具体可以参见论文:<浅析最大最小定理在信息学竞赛中的应用>--周冬 S-T平面图:首先是一平面图(满足欧拉公式与存在对偶图),且源点S,汇点T在边界上.将S-T连线,将最外面的一个大面(无限大)一分为二了,一个为S,一个为T.然后将每条边两边的面相连,权值就是该边权值.最后跑最短路,它经过的…
传送门 如果将每一个实验和其所对的仪器连一条有向边,那么原图就是一个dag图(有向无环) 每一个点都有一个点权,实验为收益(正数),仪器为花费(负数). 那么接下来可以引出闭合图的概念了. 闭合图是原图的一个点集,其中这个点集中每个点的出边所指向的点依然在这个点集中,那么这个点集就是个闭合图. 比如论文中的这个图: 在图 3.1 中的网络有 9 个闭合图(含空集):∅,{3,4,5},{4,5},{5},{2,4,5},{2,5},{2,3,4,5},{1,2,4,5},{1,2,3,4,5}…