numpy基础--线性代数】的更多相关文章

http://www.cnblogs.com/batteryhp/p/5000104.html 第四章 Numpy基础:数组和矢量计算 第一部分:numpy的ndarray:一种多维数组对象 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa…
[学习笔记] Numpy基础 上专业选修<数据分析程序设计>课程,老师串讲了Numpy基础,边听边用jupyter敲了下--理解+笔记. 老师讲的很全很系统,有些点没有记录,在PPT里就不搬了. 环境:python3.6 vscode+jupyter扩展 #%% #------------------------------2019.9.23 NumPy----------------------------- import numpy as np # 1.NumPy在一个连续的内存块中存储数…
原文:Numpy Essentials 协议:CC BY-NC-SA 4.0 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远. 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 NumPy 基础知识 零.前言 一.NumPy 简介 二.NumPy ndarray对象 三.使用 NumPy 数组 四.NumPy 核心和子模块 五.NumPy 中的线性代数 六.NumPy 中的傅立叶分析 七.构建和分发 NumPy 代码 八.使用…
前言 正式开始学习Numpy,参考用书是<用Python进行数据清洗>,计划本周五之前把本书读完,关键代码全部实现一遍 NumPy基础:数组和矢量计算 按照书中所示,要搞明白具体的性能差距,考察一个包含一百万整数的数组,和一个等价的Python列表: import numpy as np my_arr = np.arange(1000000) my_list = list(range(1000000)) 各个序列分别乘以2: %time for _ in range(10): my_arr2…
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在…
调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这其中就涉及到三个函数:sgemv_,sgemm­,saxpy­_.百度了一下,原来这三个函数是很有来头的.它们仨来自于Basic Linear Algebra Subprograms(BLAS),即基础线性代数子程序库.这个库其实就是关于向量和矩阵之间的运算的. BLAS维百介绍:https://e…
Numpy 基础操作¶ 以numpy的基本数据例子来学习numpy基本数据处理方法 主要内容有: 创建数组 数组维度转换 数据选区和切片 数组数据计算 随机数 数据合并 数据统计计算 In [1]: import numpy as np   创建一维数组¶ In [2]: data = np.arange(15) data Out[2]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])   reshape进行维度转换¶ dat…
Numpy 基础 参考https://www.jianshu.com/p/83c8ef18a1e8 import numpy as np 简单创建数组 # 创建简单列表 a = [1, 2, 3, 4] # 将列表转换为数组 b = np.array(a) print(a, "\t", b) print("\n数组元素个数:\t",b.size) print("数组形状:\t", b.shape) print("数组维度:\t"…