What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Sep, 2014 QUESTION TOPICS Singular Value Decomposition Principal Component Analysis Intuitive Explanations Statistics (academic discipline) Machine Lear…
[转载请注明出处]http://www.cnblogs.com/mashiqi Today let's talk about a intuitive explanation of Benjamini-Hochberg Procedure. My teacher Can told me this explanation. Suppose there are $M$ hypothesis:$$H_1,H_2,\cdots,H_M$$and corresponding $M$ p-values:$$p…
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
Reprinted from: http://cns-alumni.bu.edu/~slehar/fourier/fourier.html An Intuitive Explanation of Fourier Theory<a href="http://www.statcounter.com/" target="_blank"><img src="76366945-1c60-49f1-ac31-ff97990c217e_files/co…
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolutional Neural Networks Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/comment-page-4/?unapproved=31867&moderation-hash=1ac28e426bc9919dc1a295563f9c60ae#comment-31867 一.什么是卷积神经网络.为什么卷积神经网络很重要? 卷…
从 Quora 的 187 个问题中学习机器学习和NLP 原创 2017年12月18日 20:41:19 作者:chen_h 微信号 & QQ:862251340 微信公众号:coderpai 简书地址:http://www.jianshu.com/p/ac1840abc63f Quora 已经变成了一个获取重要资源的有效途径.许多的顶尖研究人员都会积极的在现场回答问题. 以下是一些在 Quora 上有关 AI 的主题.如果你已经在 Quora 上面注册了账号,你可以订阅这些主题. Comput…
PCA的数学原理 https://www.zhihu.com/question/34143886/answer/196294308 奇异值分解的揭秘(二):降维与奇异向量的意义 奇异值分解的揭秘(一):矩阵的奇异值分解过程 浅谈张量分解(三):如何对稀疏矩阵进行奇异值分解? 如何直观地理解「协方差矩阵」? PCA(主成分分析) 奇异值分解(SVD) 奇异值的物理意义是什么? https://www.zhihu.com/question/22237507/answer/53804902 https…
Goldstone's theorem是凝聚态物理中的重要定理之一.简单来说,定理指出:每个自发对称破缺都对应一个无质量的玻色子(准粒子),或者说一个zero mode. 看过文章后,我个人理解这其实是因为我们对一个系统做整体移动时,系统实际上没有发生任何变化,而这也就对应了一个无质量的玻色子,一个零模式. 文章作者是Jakob,原文链接,他的博客中部分文章还有一个非官方的中文翻译版.这个博主写的还是很浅显易懂的,用的英文也不复杂,直接看英文更好一点.博客基于WordPress,在国内可能无法正…
[转载请注明出处]http://www.cnblogs.com/mashiqi Today I try to give a brief inspection on why we always choose one-norm as the approximation of zero-norm, which is a sparsity indicator. This blog is not rigorous in theory, but I just want give a intuitive ex…