统计学习方法九:EM算法】的更多相关文章

本文,意在说明<统计学习方法>第九章EM算法的三硬币例子,公式(9.5-9.6如何而来) 下面是(公式9.5-9.8)的说明, 本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流.感谢您的阅读.欢迎转载本文,转载时请附上本文地址:http://www.cnblogs.com/Dzhouqi/p/3203776.html另外:欢迎访问我的博客 http://www.cnblogs.com/Dzhouqi/…
  EM算法是一种迭代算法,是一种用于计算包含隐变量概率模型的最大似然估计方法,或极大后验概率.EM即expectation maximization,期望最大化算法. 1. 极大似然估计   在概率模型中,若已知事件服从的分布或者其他概率模型的参数,那么我们可以通过计算得到某事件发生的概率.而在估计中,这些变成了方向过程:已知一组数据发生的结果,相当于获得了经验概率,通过这组数据假设模型服从什么分布,再通过经验概率求解模型参数.   比如统计学校学生身高服从的概率分布,抽样1000人得到他们的…
本系列笔记内容参考来源为李航<统计学习方法> EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计或极大后验概率估计.迭代由 (1)E步:求期望 (2)M步:求极大 组成,称为期望极大算法. EM算法引入 EM算法是通过不断求解下界的极大化逼近求解对数似然函数极大化的算法. EM在监督学习中的应用 收敛性 EM算法在高斯混合模型学习中的应用 高斯混合模型 高斯混合模型参数估计的EM算法 EM算法的推广 EM算法还可解释为F函数的极大-极大算法,基于这个解释有若干变形与推广. 首先…
一.EM算法是什么? EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计. 作用:简单直白的说,估计参数 是一种生成模型 (1)用在概率模型中 (2)含有隐变量 (3)用极大似然估计方法估计参数 个人理解,概率模型中的一些参数,通常是一些概率: (1)如果概率模型中的变量全部可观测,那可以统计各个变量出现的次数,然后可以求取频率,用频率估计概率 (2)如果概率模型中存在着不可观测的隐变量,直接求频率可能会不可行,此时采用EM算法来求取参数. 按照什么标准极大化参数呢? 用Y表示观…
作者:桂. 时间:2017-05-13  14:19:14 链接:http://www.cnblogs.com/xingshansi/p/6847334.html . 前言 内容主要是CART算法的学习笔记. CART算法是一个二叉树问题,即总是有两种选择,而不像之前的ID3以及C4.5B可能有多种选择.CART算法主要有回归树和分类树,二者常用的准则略有差别:回归树是拟合问题,更关心拟合效果的好坏,此处用的是均方误差准则; 分类树是分类问题,更像是离散变量的概率估计,用与熵类似的Gini系数进…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
EM也称期望极大算法(Expectation Maximization),是一种用来对含有隐含变量的概率模型进行极大似然估计的迭代算法.该算法可应用于隐马尔科夫模型的参数估计. 1.含有隐含参数的概率模型举例? 三硬币模型:A.B.C三枚硬币,这些硬币投出正面的概率分别为π.p.q.进行如下硬币实验,先投硬币A,如果为正面则投硬币B,如果为反面则投硬币C.最终出现的正面则记为1,出现反面则记为0:独立的重复n次实验(取n=10),出现的结果如下: {1,1,0,1,0,1,0,1,1} 假设只能…
EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根…
前言 支持向量机(SVM)是一种很重要的机器学习分类算法,本身是一种线性分类算法,但是由于加入了核技巧,使得SVM也可以进行非线性数据的分类:SVM本来是一种二分类分类器,但是可以扩展到多分类,本篇不会进行对其推导一步一步罗列公式,因为当你真正照着书籍进行推导后你就会发现他其实没那么难,主要是动手.本篇主要集中与实现,即使用著名的序列最小最优化(SMO)算法进行求解,本篇实现的代码主要参考了Platt J. Sequential minimal optimization: A fast algo…