【转载】Spark学习 & 机器学习】的更多相关文章

然后看的是机器学习这一块,因为偏理论,可以先看完.其他的实践,再看. http://www.cnblogs.com/shishanyuan/p/4747761.html “机器学习是用数据或以往的经验,以此优化计算机程序的性能标准.” 一种经常引用的英文定义是:A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P,…
理论原理部分可以看这一篇:http://www.cnblogs.com/charlesblc/p/6109551.html 这里是实战部分.参考了 http://www.cnblogs.com/shishanyuan/p/4747778.html 采用了三个案例,分别对应聚类.回归和协同过滤的算法. 我觉得很好,需要每一个都在实际系统中试一下. 更多api介绍可以参考 http://spark.apache.org/docs/2.0.1/ml-guide.html 1.1 聚类实例 1.1.1 …
要学习分布式以及数据分析.机器学习之类的,觉得可以通过一些实际的编码项目入手.最近Spark很火,也有不少招聘需要Spark,而且与传统的Hadoop相比,Spark貌似有一些优势.所以就以Spark来学习下. 安装部署等可以参考之前的文章:http://www.cnblogs.com/charlesblc/p/6014158.html 貌似主从Spark都部署在了 m42n05 机器上.看后续是否需要增加其他slave. 首先看了知乎这篇文章,了解了一些基础(link) 在2010年开源,目前…
Spark学习之基于MLlib的机器学习 1. 机器学习算法尝试根据训练数据(training data)使得表示算法行为的数学目标最大化,并以此来进行预测或作出决定. 2. MLlib完成文本分类任务步骤: (1)首先用字符串RDD来表示你的消息 (2)运行MLlib中的一个特征提取(feature extraction)算法来把文本数据转换为数值特征(适合机器学习算法处理):该操作会返回一个向量RDD. (3)对向量RDD调用分类算法(比如逻辑回归):这步会返回一个模型对象,可以使用该对象对…
转载自http://www.csdn.net/article/2013-07-08/2816149 Spark已正式申请加入Apache孵化器,从灵机一闪的实验室“电火花”成长为大数据技术平台中异军突起的新锐.本文主要讲述Spark的设计思想.Spark如其名,展现了大数据不常见的“电光石火”.具体特点概括为“轻.快.灵和巧”. 轻:Spark 0.6核心代码有2万行,Hadoop 1.0为9万行,2.0为22万行.一方面,感谢Scala语言的简洁和丰富表达力:另一方面,Spark很好地利用了H…
http://dblab.xmu.edu.cn/blog/spark/ 厦大数据库实验室博客 总结.分享.收获 实验室主页 首页 大数据 数据库 数据挖掘 其他 子雨大数据之Spark入门教程  林子雨老师 2016年10月30日 (updated: 2017年5月28日) 37020 [版权声明]博客内容由厦门大学数据库实验室拥有版权,未经允许,请勿转载!版权所有,侵权必究! Spark最初诞生于美国加州大学伯克利分校(UC Berkeley)的AMP实验室,是一个可应用于大规模数据处理的快速…
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用.减少了延时处理,提高性能效率实用灵活性.也可以与hadoop切实相互结合. spark核心部分分为RDD.Spark SQL.Spark Streaming.MLlib.GraphX.Spark R等核心组件解决了很多的大数据问题,其完美的框架日受欢迎.其相应的生态环境包括zepplin等可视化方面…
在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的角度介绍如何使用这两个算法.由于scikit-learn中没有关联算法的类库,而Spark MLlib有,本文的使用以Spark MLlib作为使用环境. 1. Spark MLlib关联算法概述 在Spark MLlib中,也只实现了两种关联算法,即我们的FP Tree和PrefixSpan,而像Apriori,GSP之类的关联算法是没有的.而…
在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib中,推荐算法这块只实现了基于矩阵分解的协同过滤推荐算法.而基于的算法是FunkSVD算法,即将m个用户和n个物品对应的评分矩阵M分解为两个低维的矩阵:$$M_{m \times n}=P_{m \times k}^TQ_{k \times n}$$ 其中k为分解成低维的维数,一般远比m和n小.如果大…
1.什么是spark? spark是一个基于内存的,分布式的,大数据的计算框架,可以解决各种大数据领域的计算问题,提供了一站式的服务 Spark2009年诞生于伯克利大学的AMPLab实验室 2010年正式开源了Spark项目 2013年Spark成为Apache下的项目 2014年飞速发展,成为Apache的顶级项目 2015年在国内兴起,代替mr,hive,storm等 2.SparkCore :spark是用来取代Hadoop的? 这种说法是不对的,spark由于只能做计算,所以取代掉Ma…