GBDT+LR算法解析及Python实现】的更多相关文章

1. GBDT + LR 是什么 本质上GBDT+LR是一种具有stacking思想的二分类器模型,所以可以用来解决二分类问题.这个方法出自于Facebook 2014年的论文 Practical Lessons from Predicting Clicks on Ads at Facebook . 2. GBDT + LR 用在哪 GBDT+LR 使用最广泛的场景是CTR点击率预估,即预测当给用户推送的广告会不会被用户点击. 点击率预估模型涉及的训练样本一般是上亿级别,样本量大,模型常采用速度…
1. DeepFM算法的提出 由于DeepFM算法有效的结合了因子分解机与神经网络在特征学习中的优点:同时提取到低阶组合特征与高阶组合特征,所以越来越被广泛使用. 在DeepFM中,FM算法负责对一阶特征以及由一阶特征两两组合而成的二阶特征进行特征的提取:DNN算法负责对由输入的一阶特征进行全连接等操作形成的高阶特征进行特征的提取. 具有以下特点: 结合了广度和深度模型的优点,联合训练FM模型和DNN模型,同时学习低阶特征组合和高阶特征组合. 端到端模型,无需特征工程. DeepFM 共享相同的…
1. 题目描述 Problem Description Leetcode 277. Find the Celebrity Suppose you are at a party with n people (labeled from 0 to n - 1) and among them, there may exist one celebrity. The definition of a celebrity is that all the other n - 1 people know him/h…
1. 什么是FM? FM即Factor Machine,因子分解机. 2. 为什么需要FM? 1.特征组合是许多机器学习建模过程中遇到的问题,如果对特征直接建模,很有可能会忽略掉特征与特征之间的关联信息,因此,可以通过构建新的交叉特征这一特征组合方式提高模型的效果. 2.高维的稀疏矩阵是实际工程中常见的问题,并直接会导致计算量过大,特征权值更新缓慢.试想一个10000*100的表,每一列都有8种元素,经过one-hot独热编码之后,会产生一个10000*800的表.因此表中每行元素只有100个值…
1. Learning to Rank 1.1 什么是排序算法 为什么google搜索 ”idiot“ 后,会出现特朗普的照片? “我们已经爬取和存储了数十亿的网页拷贝在我们相应的索引位置.因此,你输入一个关键字,我们将关键词与网页进行匹配,并根据200多个因子对其进行排名,这些因子包括相关性.新鲜度.流行度.PageRank值.查询和文档匹配的单词个数.网页URL链接地址长度以及其他人对排序结果的满意度等.在此基础上,在任何给定的时间,我们尝试为该查询排序并找到最佳结果.” —— Google…
1. 什么是FFM? 通过引入field的概念,FFM把相同性质的特征归于同一个field,相当于把FM中已经细分的feature再次进行拆分从而进行特征组合的二分类模型. 2. 为什么需要FFM? 在传统的线性模型中,每个特征都是独立的,如果需要考虑特征与特征之间的相互作用,可能需要人工对特征进行交叉组合.非线性SVM可以对特征进行核变换,但是在特征高度稀疏的情况下,并不能很好的进行学习.由于推荐系统是一个高度系数的数据场景,由此产生了FM系列算法,包括FM,FFM,DeepFM等算法. 3.…
本质上GBDT+LR是一种具有stacking思想的二分类器模型,所以可以用来解决二分类问题.这个方法出自于Facebook 2014年的论文 Practical Lessons from Predicting Clicks on Ads at Facebook . GBDT+LR 使用最广泛的场景是CTR点击率预估,即预测当给用户推送的广告会不会被用户点击. 点击率预估模型涉及的训练样本一般是上亿级别,样本量大,模型常采用速度较快的LR.但LR是线性模型,学习能力有限,此时特征工程尤其重要.现…
前一篇文章我们介绍了LR->FM->FFM的整个演化过程,我们也知道,效果最好的FFM,它的计算复杂度已经达到了令人发指的\(n^2k\).其实就是这样,希望提高特征交叉的维度来弥补稀疏特征,不可避免的带来组合爆炸和计算复杂度过高的问题.这一篇,我们介绍一下Facebook提出的GBDT+LR的组合来解决特征组合和筛选的问题. 结构 整体的思路就是用GBDT构建特征工程,使用LR预估CTR这两步.由于这两步是独立的,所以不存在将LR的梯度回传到GBDT这类复杂问题.关于GBDT,就需要另外开一…
python——常见排序算法解析   算法是程序员的灵魂. 下面的博文是我整理的感觉还不错的算法实现 原理的理解是最重要的,我会常回来看看,并坚持每天刷leetcode 本篇主要实现九(八)大排序算法,分别是冒泡排序,插入排序,选择排序,希尔排序,归并排序,快速排序,堆排序,计数排序.希望大家回顾知识的时候也能从我的这篇文章得到帮助. 概述 十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排…
梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python) http://blog.csdn.net/liulingyuan6/article/details/53426350 梯度迭代树 算法简介: 梯度提升树是一种决策树的集成算法.它通过反复迭代训练决策树来最小化损失函数.决策树类似,梯度提升树具有可处理类别特征.易扩展到多分类问题.不需特征缩放等性质.Spark.ml通过使用现有decision tree工具来实现. 梯度提升树依次迭代训练一系列的…