Gym 101147G 第二类斯特林数】的更多相关文章

题目链接:http://codeforces.com/gym/101147/problem/G 题意:n个人,去参加k个游戏,k个游戏必须非空,有多少种放法? 分析: 第二类斯特林数,划分好k个集合后乘以阶乘: #include <bits/stdc++.h> using namespace std; ; + 7L; long long stir[maxn][maxn]; long long fac[maxn]; void init() { fac[] = fac[] = ; ;i<=;…
大致题意: n个孩子,k场比赛,每个孩子至少参加一场比赛,且每场比赛只能由一个孩子参加.问有多少种分配方式. 分析: k>n,就无法分配了. k<=n.把n分成k堆的方案数乘以n的阶乘.N分成k堆得方案数即第二类斯特林数 http://blog.csdn.net/acdreamers/article/details/8521134 #include <bits/stdc++.h> using namespace std; typedef long long ll; const ll…
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s memory limit per test 64 MB input galactic.in output standard output Altanie is a very large and strange country in Mars. People of Mars ages a lot. So…
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k·2^{\frac{n(n-1)}{2}}\] 因为有\(n\)个点,所以还要乘以一个\(n\) 所以,我们真正要求的就是: \[\sum_{i=0}^{n-1}C_{n-1}^i·i^k\] 怎么做? 看到了\(i^k\)想到了第二类斯特林数 \[m^n=\sum_{i=0}^{m}…
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i=0}^n\sum_{j=0}^nS(i,j)·j!·2^j\] \[=\sum_{i=0}^n\sum_{j=0}^nj!·2^j(\frac{1}{j!}\sum_{k=0}^j(-1)^k·C_j^k·(j-k)^i)\] \[=\sum_{j=0}^n2^j\sum_{k=0}^j(-1)^k…
传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k\le 5000$. 很水的一道题. 根据第二类斯特林数的性质: $$n^k=\sum^k_{i=1}\begin{Bmatrix}k\\i\end{Bmatrix}i!\dbinom{n}{i}$$ 那么直接套进去: $$\sum\limits^n_{i=1}\dbinom{n}{i}\sum^k…
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是用第二类斯特林数转化一下,这样可以预处理第二类斯特林数,而sigma(C(dist(u,v),i))则利用C(n,x)=C(n-1,x)+C(n-1,x-1)来进行树DP转移得到. 设dp[u][k]=sigma(C(dist(u,v),k)),则dp[u][k]=dp[v][k]+dp[v][k-…
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权值为$V(R)=\sum\limits_{S\in R} W(S)$.求将n个物品划分成k个集合的所有方案的权值和. $n,k\le 2\cdot 10^5,w_i\le 10^9$ 题解:第二类斯特林数针是太好用辣! 显然每个物品都是独立的,所以我们只需要处理出每个物品被统计的次数即可,说白了就是…
[CF932E]Team Work(第二类斯特林数) 题面 洛谷 CF 求\(\sum_{i=1}^nC_{n}^i*i^k\) 题解 寒假的时候被带飞,这题被带着写了一遍.事实上并不难,我们来颓柿子. 首先回忆一下第二类斯特林数关于整数幂的计算公式: \[m^n=\sum_{i=0}^mC_{m}^i*S(n,i)*i!\] \(m^n\)理解为把\(n\)个不同的球放到\(m\)个不同的盒子中去.那么我们枚举有几个盒子非空,用第二类斯特林数乘阶乘计算放置的方案数,最后求和就是结果. 那么直接…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…