PyTorch深度学习实践——反向传播】的更多相关文章

反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性模型就是一个最简单的神经网络的结构,其内部参数的更新过程如下: 对于简单的模型来说可以直接使用表达式的方式来更新权重,但是如果网络结构比较复杂(如下图),直接使用解析式的方式来更新显然有些复杂且不太可能实现. 反向传播就是为了解决这种问题.反向传播的基本思想就是将网络看成一张图,在图上传播梯度,从而使用链式传…
多分类问题 目录 多分类问题 Softmax 在Minist数据集上实现多分类问题 作业 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili Softmax 这一讲介绍使用softmax分类器实现多分类问题. 上一节课计算的是二分类问题,也就是输出的label可以分类为0,1两类.只要计算出\(P(y=1)\)的概率,那么\(P(y=0)=1-P(y=1)\):所以只需要计算一种类型的概率即可,也就是只要一个参数. 而在使用…
处理多维特征的输入 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 这一讲介绍输入为多维数据时的分类. 一个数据集示例如下: 由于使用的是多维的数据,因此模型中的x和y都应该变为向量的形式,变为如下式子: 而下方针对多维数据的式子中的一部分可以使用矩阵相乘的方式表示: \[\hat y^{(i)}=\sigma([x_1^{(i)}...x_8^{(i)}]\begin{bmatrix} w_1\\ .\\ .\\ .\…
症状:前向计算一切正常.梯度反向传播的时候就出现异常,梯度从某一层开始出现Nan值(Nan: Not a number缩写,在numpy中,np.nan != np.nan,是唯一个不等于自身的数). フォワードの計算に異常なしでも.その模型の変量をアプデートする時に異常な数字が出る.Pythonのプログラムにあるなら.Nanというもの現れることです. 根因:原因目前遇到的分为两种,其一——你使用了power(x, a) (a < 1)这样的算子,因为power函数这样的算子,在梯度反向传播阶段…
反向传播算法实战 本文仅仅是反向传播算法的实现,不涉及公式推导,如果对反向传播算法公式推导不熟悉,强烈建议查看另一篇文章神经网络之反向传播算法(BP)公式推导(超详细) 我们将实现一个 4 层的全连接网络,来完成二分类任务.网络输入节点数为 2,隐藏 层的节点数设计为:25.50和25,输出层两个节点,分别表示属于类别 1 的概率和类别 2 的概率,如下图所示.这里并没有采用 Softmax 函数将网络输出概率值之和进行约束, 而是直接利用均方误差函数计算与 One-hot 编码的真实标签之间的…
Overview 1.PyTorch简介 ​ PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序.它主要由Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速,同时还支持动态神经网络. 2.与TensorFlow区别 ​ pytorch是一个动态的框架,而TensorFlow是静态框架(2.x版本也为动态框架优先).静态框架就是指我们首先构建一个计算图,构建完成之后这个图就不再变化,通过给变量赋值来进行计算,这样势必导致我们需要修改逻辑的时…
如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) 每层之间每个节点都是完全连接的,其中包含权重(W).每层都存在一个偏移值(b). 每一层节点的计算方式如下: 其中g()代表激活函数,o()代表softmax输出函数. 使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下: x: 输入值 a(x):表示每个隐藏层的pre-acti…
使用PyTorch构建神经网络以及反向传播计算 前一段时间南京出现了疫情,大概原因是因为境外飞机清洁处理不恰当,导致清理人员感染.话说国外一天不消停,国内就得一直严防死守.沈阳出现了一例感染人员,我在22号乘坐飞机从沈阳乘坐飞机到杭州,恰好我是一位密切接触人员的后三排,就这样我成为了次密切接触人员,人下飞机刚到杭州就被疾控中心带走了,享受了全免费的隔离套餐,不得不说疾控中心大数据把控是真的有力度.在这一段时间,也让我沉下心来去做了点事,之前一直鸽的公众号也开始写上了...不过隔离期间确实让我这么…
前期回顾: 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型 深度学习实践系列(2)- 搭建notMNIST的深度神经网络 在第二篇系列中,我们使用了TensorFlow搭建了第一个深度神经网络,并且尝试了很多优化方式去改进神经网络学习的效率和提高准确性.在这篇文章,我们将要使用一个强大的神经网络学习框架Keras配合TensorFlow重新搭建一个深度神经网络. 什么是Keras? 官方对于Keras的定义如下: "Keras: Deep Learning library for…
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能.通过学习<深度学习入门之PyTorch>,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型.学到机器学习中的线性回归和 Logistic 回归.深度…