Flink中的Time与Window】的更多相关文章

一.Time 在Flink的流式处理中,会涉及到时间的不同概念 Event Time(事件时间):是事件创建的时间.它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳 Ingestion Time(采集时间):是数据进入Flink的时间 Processing Time(处理时间):是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time. 例如一条日志进入Flink的时间为…
Flink Window机制范例实录: 什么是Window?有哪些用途? 1.window又可以分为基于时间(Time-based)的window 2.基于数量(Count-based)的window. Flink DataStream API提供了Time和Count的window,同时增加了基于Session的window. 同时,由于某些特殊的需要,DataStream API也提供了定制化的window操作,供用户自定义window. 下面,主要介绍Time-Based window以及…
一.Flink中的window 1,window简述  window 是一种切割无限数据为有限块进行处理的手段.Window 是无限数据流处理的核心,Window 将一个无限的 stream 拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作. 2,window类型 window可分为CountWindow和TimeWindow两类:CountWindow:按照指定的数据条数生成一个 Window,与时间无关:TimeWindow:按照时间生成 Window. a)滚动窗口 将数…
前言 Flink 是流式的.实时的 计算引擎 上面一句话就有两个概念,一个是流式,一个是实时. 流式:就是数据源源不断的流进来,也就是数据没有边界,但是我们计算的时候必须在一个有边界的范围内进行,所以这里面就有一个问题,边界怎么确定? 无非就两种方式,根据时间段或者数据量进行确定,根据时间段就是每隔多长时间就划分一个边界,根据数据量就是每来多少条数据划分一个边界,Flink 中就是这么划分边界的,本文会详细讲解. 实时:就是数据发送过来之后立马就进行相关的计算,然后将结果输出.这里的计算有两种:…
前言 目前有许多数据分析的场景从批处理到流处理的演变, 虽然可以将批处理作为流处理的特殊情况来处理,但是分析无穷集的流数据通常需要思维方式的转变并且具有其自己的术语(例如,"windowing(窗口化)"."at-least-once(至少一次)"."exactly-once(只有一次)" ). 对于刚刚接触流处理的人来说,这种转变和新术语可能会非常混乱. Apache Flink 是一个为生产环境而生的流处理器,具有易于使用的 API,可以用于…
其实CEP复杂事件处理,简单来说你可以用通过类似正则表达式的方式去表示你的逻辑,表现能力非常的强,用过的人都知道 开篇先偷一张图,整体了解Flink中的CEP中的  一种重要的图  NFA非确定有限状态机 FlinkCEP在运行时会将用户的逻辑转化成这样的一个NFA Graph (nfa对象) graph 中包含状态(Flink中State对象),以及连接状态的边(Flink中StateTransition对象) 当从一个State跳变到另一个State时需要通过一条边StateTransiti…
本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink PMC,阿里巴巴高级技术专家 孙金城 分享.重点为大家介绍 Flink Python API 的现状及未来规划,主要内容包括:Apache Flink Python API 的前世今生和未来发展:Apache Flink Python API 架构及开发环境搭建:Apache Flink Python API 核心算子介绍及应用. 一.Apache Flink Python API 的前世今生和未来发展 1.…
1 前言 在时间 Time 那一篇中,介绍了三种时间概念 Event.Ingestin 和 Process, 其中还简单介绍了乱序 Event Time 事件和它的解决方案 Watermark 水位线 (看过多篇文章后,决定喊它水位线,因为窗口触发条件是 Watermark > Window_end_time,有点像水流到达水位线后溢出,当然喊它水印也是可以的,全看个人爱好咯~) 前文请翻 时间 Time 和 Watermark,不过前面介绍比较浅,没能很好领会水位线的概念,所以本篇是作为补充,…
Flink中的时间类型和窗口是非常重要概念,是学习Flink必须要掌握的两个知识点. Flink中的时间类型 时间类型介绍 Flink流式处理中支持不同类型的时间.分为以下几种: 处理时间 Flink程序执行对应操作的系统时间.所有基于时间的操作(例如:时间窗口)都将使用运行相应operator的系统时间.例如:每个小时的处理时间窗口包括在系统时间范围内所有operator接收到的记录.例如:如果应用程序在09:15开始运行,则第一个滚动时间窗口将包括:09:15 – 10:00 之间的处理事件…
1.概念 Task(任务):Task是一个阶段多个功能相同的subTask 的集合,类似于Spark中的TaskSet. subTask(子任务):subTask是Flink中任务最小执行单元,是一个Java类的实例,这个Java类中有属性和方法,完成具体的计算逻辑. Operator Chains(算子链):没有shuffle的多个算子合并在一个subTask中,类似于Spark 中的Pipeline. Slot(插槽):Flink 中计算资源进行隔离的单元,一个Slot中可以运行多个subT…
window.self指的是当前窗口:他等价于window,self,window.self window.top指的是最顶层的窗口(有些页面可能会嵌套好几个iframe)如果只有一个窗口,那么就返回本身: window.parent指的是父窗口: 如何判断当前窗口是否在一个框架中: var yes=  window.top!=window.self document.write( "当前窗口是否在一个框架中:"+ yes);…
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Flink中的窗口 9-Flink中的Time Flink时间戳和水印 Broadcast广播变量 FlinkTable&SQL Flink实战项目实时热销排行 Flink写入RedisSink 17-Flink消费Kafka写入Mysql 戳原文: 1-Flink入门 2-本地环境搭建&构建第一个…
感谢英文原文作者:https://data-artisans.com/blog/a-practical-guide-to-broadcast-state-in-apache-flink 不过,原文最近好像不能访问了.应该是https://www.da-platform.com/网站移除了blog板块了. 从版本1.5.0开始,Apache FlinkⓇ具有一种新的状态,称为广播状态. 在这篇文章中,我们解释了广播状态是什么,并展示了如何将其应用于评估事件流上的动态模式的应用程序的示例.我们将引导…
摘自Apache Flink官网 最早的streaming 架构是storm的lambda架构 分为三个layer batch layer serving layer speed layer 一.在streaming中Flink支持的通知时间 Flink官网写了个了解streaming和各种时间的博客 https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101#F2 1.Processing time:执行时候的机器系统时…
在做项目的过程中,需要实现Activity非全屏显示.窗口背景透明显示的效果. 在实现这些功能的过程中,涉及到Window与WindowManager两个类,经过查一些相关资料,了解二者之间的不同点如下所示: 1)WindowManager继承自ViewManager这个接口,这个接口主要有以下的实现子接口: * addView();         * updateViewLayout();        * removeView(); 在WindowManager中,addView方法表示的…
前言 Flink 在流程序中支持不同的 Time 概念,就比如有 Processing Time.Event Time 和 Ingestion Time. 下面我们一起来看看这几个 Time: Processing Time Processing Time 是指事件被处理时机器的系统时间. 当流程序在 Processing Time 上运行时,所有基于时间的操作(如时间窗口)将使用当时机器的系统时间.每小时 Processing Time 窗口将包括在系统时钟指示整个小时之间到达特定操作的所有事…
前言 如果你了解 Apache Flink 的话,那么你应该熟悉该如何像 Flink 发送数据或者如何从 Flink 获取数据.但是在某些情况下,我们需要将配置数据发送到 Flink 集群并从中接收一些额外的数据. 在本文的第一部分中,我将描述如何将配置数据发送到 Flink 集群.我们需要配置很多东西:方法参数.配置文件.机器学习模型.Flink 提供了几种不同的方法,我们将介绍如何使用它们以及何时使用它们.在本文的第二部分中,我将描述如何从 Flink 集群中获取数据. 如何发送数据给 Ta…
TaskManager接收到来自JobManager的jobGraph转换得到的TDD对象,启动了任务,在StreamInputProcessor类的processInput()方法中 通过一个while(true)中不停的拉取上游的数据,然后调用streamOperator.processElement(record)调用用户实现的方法去处理数据拉取的数据 首先先来看下这个operator对象 然后看看OneInputStreamOperator类的UML 这里所有的实现类没有全部列出,只列了…
先上一张图整体了解Flink中的反压   可以看到每个task都会有自己对应的IG(inputgate)对接上游发送过来的数据和RS(resultPatation)对接往下游发送数据, 整个反压机制通过inputgate,resultPatation公用一个一定大小的memorySegmentPool来实现(Flink 中memorySegment作为内存使用的抽象,类比bytebuffer), 公用一个pool当接收上游数据时Decoder,往下游发送数据时Encoder,都会向pool中请求…
先上张图整体了解Flink中的异步io 阿里贡献给flink的,优点就不说了嘛,官网上都有,就是写库不会柱塞性能更好 然后来看一下, Flink 中异步io主要分为两种 一种是有序Ordered 一种是无序UNordered 主要区别是往下游output的顺序(注意这里顺序不是写库的顺序既然都异步了写库的顺序自然是无法保证的),有序的会按接收的顺序继续往下游output发送,无序就是谁先处理完谁就先往下游发送 两张图了解这两种模式的实现 有序:record数据会通过异步线程写库,Emitter是…
一.概述   Activity 可以说是应用程序的载体(也可以理解为界面的载体,但是不界面),用户能够在上面绘制界面(Activity本身不绘制界面),并提供用户处理事件的API,维护应用程序的生命周期(Android应用程序是由多个 Activity 堆积而成,而各个 Activity 又有其独立的生命周期).         Activity内部组合了一个Window(这是一个抽象类,具体是PhoneWindow)对象.我们自己写的扩展一个Activity时,在onCreate 方法中调用…
流式计算中处理延迟是一个非常重要的监控metric flink中通过开启配置   metrics.latency.interval  来开启latency后就可以在metric中看到askManagerJobMetricGroup/operator_id/operator_subtask_index/latency指标了 如果每一条数据都打上时间监控 输出时间- 输入时间,会大量的消耗性能 来看一下flink自带的延迟监控是怎么做的 其实也可以想到原理很简单,就是在source周期性的插入一条特…
前几天在社区群上,有人问了一个问题 既然上游最小水印会决定窗口触发,那如果我上游其中一条流突然没有了数据,我的窗口还会继续触发吗? 看到这个问题,我蒙了???? 对哈,因为我是选择上游所有流中水印最小的一条作为当前水印时间,那万一最小水印的那条流突然里面没有数据了 那我的最小水印不就一直不往前走了,一直是那个没有数据流的水印了吗,因为它的水印最小,而且一直不会更新了 ????然后窗口再也不触发???? 思考了一下,发现好像也对,当我有一个上游的水印没来的时候,我就等着呗,谁知道他是不是延迟了 但…
1.State概念理解 在Flink中,按照基本类型,对State做了以下两类的划分:Keyed State, Operator State. Keyed State:和Key有关的状态类型,它只能被基于KeyedStream之上的操作,方法所使用.我们可以从逻辑上理解这种状态是一个并行度操作实例和一种Key的对应, <parallel-operator-instance, key>.Operator State:(或者non-keyed state),它是和Key无关的一种状态类型.相应地我…
2. Flink中的数据传输 在一个运行的application中,它的tasks在持续交换数据.TaskManager负责做数据传输.TaskManager的网络组件首先从缓冲buffer中收集records,然后再发送.也就是说,records并不是一个接一个的发送,而是先放入缓冲,然后再以batch的形式发送.这个技术可以高效使用网络资源,并达到高吞吐.类似于网络或磁盘 I/O 协议中使用的缓冲技术. 这里需要注意的是:传输缓冲buffer中的记录,隐含表示的是,Flink的处理模型是基于…
flink中使用lambda表达式 1.使用lambda的一个示例 2.使用上面这种写法通常或得到如下错误 3.解决方案 4.建议 5.完整代码 在 java8中有一种新的语法糖,即 lambda表达式,在 flink中,支持对所有的java api提供了 lambda的支持,但是存在一些限制,此处举一个例子,来说明如何在 flink中使用 lambda表达式,以及出错后如何处理. 参考链接:https://ci.apache.org/projects/flink/flink-docs-stab…
package com.chenxiang.flink.demo; import java.io.IOException; import java.net.ServerSocket; import java.net.Socket; import java.util.Scanner; /** * @author 闪电侠 */ public class IOServer { public static void main(String[] args) throws Exception { Serve…
窗口 在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理.当然我们可以每来一个消息就处理一次,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页.在这种情况下,我们必须定义一个窗口,用来收集最近一分钟内的数据,并对这个窗口内的数据进行计算. Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理.而窗口(window)就是从 Streaming 到 Batc…
http://www.aboutyun.com/thread-26393-1-1.html 问题导读 1.如何在window下安装Flink? 2.Flink本地安装启动命令与原先版本有什么区别? 3.window和Linux本地启动命令有什么区别? 4.如何查看Flink web ui? 关注最新经典文章,欢迎关注公众号 上一篇: 彻底明白Flink系统学习4:功能点介绍 http://www.aboutyun.com/forum.php?mod=viewthread&tid=26377 本文…
这次需要做一个监控项目,全网日志的指标计算,上线的话,计算量应该是百亿/天 单个source对应的sql如下 最原始的sql select pro,throwable,level,ip,`count`,id,`time`,firstl,lastl from ( select pro,throwable,level,ip, count(*) as `count`, lastStrInGroupSkipNull(CONCAT_WS('_',KAFKA_TOPIC,CAST(KAFKA_PARTITI…