考虑对于一棵树$G$,这个问题的答案-- 当$k$为奇数时答案显然为0,否则从$V$中任选$k$个点,以任意一点为根,从底往上不难发现子图数量唯一 换言之,当$k$为偶数时,每一个合法(恰有$k$个奇度数的点)子图恰好对应于一种选择方案,即${|V|\choose k}$ 当$G$是一张连通图时,继续来分析答案-- 首先$k$仍要是偶数,且仍然考虑任选$k$点,并求出其一棵生成树 对于生成树以外的边,任意选每一条边是否加入子图,之后同样可以通过这棵生成树构造出一组方案,换言之每一组选点方案恰对应…