luogu P2473 奖励关】的更多相关文章

奖励关 看到数据范围,想到状压,那问题就是如何设计方程 设\(dp[i][j]\)表示在第\(i\)轮的时候,状态为\(j\)时的最优策略所拿的分值,\(j\)的二进制下为1的位置,表示选了这个宝物,如果\(i\)是顺着推的话,可能会出现在第\(i\)轮的时候,无法到达\(j\)这个状态的情况,所以倒着推\(i\), 考虑两种情况 当不能选这个宝物时 \[dp[i]][j]\;+= dp[i+1][j] \] 当能选这个宝物时,则两种选择,选或不选 \[dp[i][j]\;+=\max(dp[i…
题目链接 逆推期望DP.设f[i][j]为1~i-1中吃到的宝物集合为j,在i~k轮能得到的最大期望分数. 如果不吃显然f[i][j]+=f[i+1][j]/n 如果吃就是f[i][j]+=max(f[i+1][j]/n,(f[i+1][j|(1<<k-1)]+q[k])/n) 然后照着这样的方程式搞一搞,最后答案就是f[1][0]. 话说我一开始的状态设计就是题解吐槽的那种,然后我想了一个多小时发现:诶?转移不动呀? qwq #include<cstdio> #include&l…
题目:https://www.luogu.org/problemnew/show/P2473 还是对DP套路不熟悉... 像这种前面影响后面,而后面不影响前面的问题就应该考虑倒序递推: 看n只有15那么考虑状压,期望什么的就是除一下n就行了. 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; ],cnt[],s[]; ][<<]; int main…
题目链接:P2473 [SCOI2008]奖励关 题意:有n个宝物 每次等概率抛出其中之一一共抛出k次每个宝物有一个价值 和一个前提集合只有集齐了集合中的所有宝物 才可以领取这个宝物 范围:1 <= k <= 100, 1 <= n <= 15,分值为[-106,106]内的整数   这个范围长得很dp呀这个n长得很状压啊   最初想法:对于负价值宝物我们计算它本身的贡献与它带来的期望贡献来判定是否可取对每一个宝物记录它自己的贡献最后求和   正解:逆向状压 2 ^ 15 = 32…
P2473 [SCOI2008]奖励关 $n<=15$,显然的状压 设$f[i][w]$表示前$i$轮,状态$w$的最大期望 蓝后我们发现一个问题:$f[i][w]$可能是非法的 于是我们从$f[i][w]$转移到$f[i][w|(1<<j)]$时可能会GG 那咋办鸭 试试逆推 设$f[i][w]$表示第$i -> k$轮,状态$w$的最大期望 从后往前推,就可以判断掉非法操作 合法时$f[i][w]+=max(f[i+1][w],f[i+1][w|(1<<(j-1))…
P2473 [SCOI2008]奖励关 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出\(k\)次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有\(n\)种,系统每次抛出这\(n\)种宝物的概率都相同且相互独立.也就是说,即使前\(k-1\)次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第\(k\)次抛出各个宝物的概率依然均为\(1/n\). 获取第\(i\)…
http://www.lydsy.com/JudgeOnline/problem.php?id=1076 https://www.luogu.org/problemnew/show/P2473 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1 次系统都抛出宝物1(这…
P2473 [SCOI2008]奖励关 题目背景 08四川NOI省选 题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1 次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第 i 种宝物将得到Pi分,…
Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1935  Solved: 1053 Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小)…
题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃). 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立.也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n. 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的.第i种宝物有一个前提宝物集合Si.只有当…