「SDWC2018 Day1」网格】的更多相关文章

模拟赛考过的题 当时太菜了现在也一样只拿到了$ 30$分 回来填个坑 LOJ #6374 题意 你要从$ (0,0)$走到$ (T_x,T_y)$,每次移动的坐标增量满足$ 0 \leq \Delta x \leq M_x,0 \leq \Delta y \leq M_y$ 不允许原地不动,且存在$ k$个坐标增量$ (k_i,k_i)$不能移动 求恰好$ R$步走到终点的方案数,对$ 1e9+7$取模 数据范围有$ T_x,T_y \leq 10^6,k \leq 50,R \leq 1000…
题目当中有三条限制,我们来逐一考虑.对于第一条限制,每次走动的增加量 \(x_i \le M_x, y_i \le M_y\),可以发现一共走的步数是确定的,那么就相当于解这样两个方程组: \[x_1 + x_2 + \cdots x_R = Tx \] \[y_1 + y_2 + \cdots y_R = Ty \] 其中 \(x_i \le M_x, y_i \le M_y\),其实是两个独立的方程,最终解的数量实际上是上下两个方程解的数量相乘的结果,于是我们已第一个方程的解为例来思考.可以…
LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我们分两部分贪心:(注意 $ tot $ 表示左右元素的异或和) 首先我们要让总和最大的话,我们只需要讨论 $ tot $ 的某一位为0的情况(如果为1,那么不管怎么分配两边的数都只能并且一定有一个数,使它这一位上含有1).对于 $ tot $ 的某一位为0的情况,我们肯定贪心的让两边都在这一位上含有…
有趣的思博套路题,想到了基本上加上个对线性基的理解就可以过了 首先考虑到这个把数分成两半的分别异或的过程不会改变某一位上\(1\)的总个数 因此我们求出所有数的\(\operatorname{xor}\),然后从高到低枚举每一位的值,分情况讨论: 如果这一位是\(1\),那么显然分配完后必然使得\(x_1,x_2\)中一个是\(0\),一个是\(1\) 如果这一位是\(0\),如果不是全\(0\),那么必然可以构造方案让\(x_1,x_2\)两数都是\(1\) 比较一下我们优先使\(x_1+x_…
点此看题面 大致题意: 让你把\(n\)个数分成两部分,使得在两部分异或和之和最大的前提下,两个异或和中较小的那个尽量小.输出最优的较小异或和. 线性基 关于线性基,可以看一下这篇博客:线性基入门. 解题思路 首先,做这题要有一定的位运算常识. 我们求出所有数的异或和,记作\(s\). 则对于\(s\)二进制下每一位,我们进行分类讨论: 如果这一位是\(1\).则划分出的两个集合的异或和这一位必然分别是\(0\)或\(1\),即:两个集合中这一位之和是固定不变的. 如果这一位是\(0\).则划分…
题目传送门 题目大意 给出一个长度为 \(n\) 的数组,选出一些数异或之和为 \(s1\),其余数异或之和为 \(s2\),求 \(s1+s2\) 最大时 \(s1\) 的最小值. 思路 你发现如果你设 \(s\) 为所有数的异或和,那么如果 \(s\) 某一位为 \(0\) 就可以拆成\(1\oplus 1\),不同就只能拆成 \(0\oplus 1\),所以我们应该多拆 \(0\) ,这个用线性基实现即可. \(\texttt{Code}\) #include <bits/stdc++.h…
「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \(max=min+1\) 并且 \(d|max\),是可以直接剪掉的. 我们定义线段树上一个结点的势能为 \(\log(max-min)\),那么我们每执行一次区间除,都会引起势能的减小. 但是执行区间加时我们涉及 \(\log n\) 个结点,最差情况下会将它们的势能恢复为 \(\log(max-m…
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询问会给定一个长度为 \(k\) 的字符串 \(w\) 以及一对 \(L,R\), 求所有满足 \(i\in [L,R]\) 的 \(w[l_i:r_i]\) 在 \(s\) 中的出现次数之和. \(n,m,k,q\le 1\times 10^5\), \(\sum |w|\le 1\times 10…
[LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解输出 -1. \(n \le 1000\). 题解 首先手玩下样例就可以发现一个非常虾皮的明显性质: 因为操作是赋值而不是取或, 于是一定是先让某一行都为 1 然后用这一行去染所有不是全 1 的列. 对于构造一个全 1 的行, 如果行号为 \(k\), 那么显然是用某一行的第 \(k\) 列上的 1…
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l r c 给 \([l,r]\) 区间内的值全部加上 \(c\). 2 l r d 给 \([l,r]\) 区间内的值全部除以 \(d\), 向下取整. 3 l r 求 \([l,r]\) 区间内的最小值. 4 l r 求 \([l,r]\) 区间内的值之和. \(n,q\le 1\times 10…
LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把第二段给他,这样下去一定有解 代码细节具体在比较大小的时候成绩可能需要int128 然后在给每个人分段的时候,把一个馕的长度当成\(Nq\),把要得到的每段长度当成\(sum\)(所有段快乐度的总和)就可以1去分了 #include <bits/stdc++.h> #define fi first…
LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链,询问链的两个端点和u的虚树,如果u在链上那么二分找出u的位置,如果u不在链上且和链相连的点不在链上,那么建出那个点然后连上u,否则删除整条链,保留与u相连的那个点,继续这个操作 二分的代价应该最多是11,每次差不多删掉两个儿子是18/2 = 9 然而这个上限肯定跑不到,最后实测操作次数最多的数据点…
LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- 也不好求 我们把c转化成max(c,a + b) 就会发现这条斜线把不合法的刚好分成了三个部分,也就是第一门小于a的,总分大于c的,和第二门小于b的总分大于c的,和总分小于c的 你可以发现前两个部分是不相交的,于是开个树状数组把询问按c排序做一遍就好了,然后点集按s + t排序,小于c的就从所在的…
「NOI2016」网格 容易注意到,答案最多为2,也就是说答案为-\(1,0,1,2\)四种,考虑逐个判断. 无解的情况比较简单 如果\(nm\le c+1\),显然无解 如果\(nm=c+2\),判断2个跳蚤(如无说明,以下白点指跳蚤)是否四联通(如无说明,以下联通均指四联通),如果是,无解. 先不考虑复杂度 \(0\)的情况,就是白点有两个以上联通块,可以直接bfs判断 \(1\)的情况,就是白点存在割点,可以通过tarjan判断 \(2\)的情况,就是其他情况 这样的复杂度是\(O(Tnm…
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序,依次提高终点的时间,然后跑dijkstra(记得把访问标记回滚清空掉). 每条边被跑过了就不再跑了.可以用set,也可以vector(排序,记当前在第几条边) #include <bits/stdc++.h> #define rep(q, a, b) for (int q = a, q##_end…
「BalkanOI 2018 Day1」Election 记C为1,T为-1,\(sum[i]\)为\(i\)点的前缀和. 对于询问\([l,r]\),分两步计算答案. 要求所有点的\(sum[i]-sum[l-1] \geq 0\),那么就把一些点拔高,需要删去的点数为\(max(sum[l-1]-sum[i])\),最终得到\(sum^{'}[i]\),记需要删去的点个数为\(ans_1\). 要求所有点\(sum^{'}[r]-sum^{'}[i] \geq 0\),那么就把一些点降低,需…
「BalkanOI 2018 Day1」Minmaxtree 每个点都有一个最大和最小权值的限制. 然后每一个权值的限制都必须要取到. 每个点显然可以直接让他取到最大或最小权值. 可以想到每个点匹配一个权值. 不就是一个二分图吗... 每个点连向最大和最小权值,然后跑dinic,输出方案,当然本题匈牙利可以跑过. 接下来就是要求每个点的权值限制:可以用LCT直接链标记,也可以离线下来,排序后,依次加入,用一个并查集跳过已经访问过的点. #include<bits/stdc++.h> #defi…
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加,删点即可. 子任务4 目前可以支持在\(o(log(n) )\)的时间里动态加,删单点了. 容易想到莫队. 直接用multiset维护复杂度\(o(n \sqrt n log(n))\).(一脸不可过) 稍微优化一下 ​ 若使用cnt记录的话,是没法很好的删点的. ​ 对于目前要处理的块\([l,r…
「Android 开发」入门笔记(界面编程篇) ------每日摘要------ DAY-1: 学习笔记: Android应用结构分析 界面编程与视图(View)组件 布局管理器 问题整理: Android官方API文档 如何设置Android中的颜色 Android Studio如何进行调试 每日体会 参考资料 DAY-2: 学习笔记: TextView及其子类 问题整理: 关于API版本的一点疑问及解决 如何实现按钮按下和松开时为不同的图片 关于如何实现文本域中灰色的提示文本的一点思考 每日…
❝ 文章每周持续更新,各位的「三连」是对我最大的肯定.可以微信搜索公众号「 后端技术学堂 」第一时间阅读(一般比博客早更新一到两篇) ❞ 单体式应用程序 与微服务相对的另一个概念是传统的「单体式应用程序」( Monolithic application ),单体式应用内部包含了所有需要的服务.而且各个服务功能模块有很强的耦合性,也就是相互依赖彼此,很难拆分和扩容. 说在做的各位都写过单体程序,大家都没意见吧?给大家举个栗子,刚开始写代码你写的helloworld程序就是单体程序,一个程序包含所有…
目录 问题引入 思考 Lagrange 插值法 插值过程 代码实现 实际应用 「洛谷 P4781」「模板」拉格朗日插值 「洛谷 P4463」calc 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 995F」Cowmpany Cowmpensation 题意简述 数据规模 Solution Step 1 Step 2 证明 代码 「CF 662F」The Sum of the k-th Powers 题意简述 数据规模 Solution 代码 「BZOJ 3…
前端构建工具之gulp(一)「图片压缩」 已经很久没有写过博客了,现下终于事情少了,开始写博吧 今天网站要做一些优化:图片压缩,资源合并等 以前一直使用百度的FIS工具,但是FIS还没有提供图片压缩的相关插件,于是找到了腾讯的智图,而智图目前提供的插件只有gulp-imageisux 无奈之下,只好去学习gulp这款工具了,下面是gulp的相关介绍: gulp介绍 gulp.js 是一种基于流的,代码优于配置的新一代构建工具. Gulp 和 Grunt 类似.但相比于 Grunt 的频繁的 IO…
最近 Android 转用 Swift 的传闻甚嚣尘上,Swift 的 Github 主页上已经有了一次 merge>>「Port to Android」,让我们对 Swift 的想象又多了一些空间. 本期 fir.im Weekly 一如往期精选了一些实用的 iOS,Swift,Android 的开发工具和源码分享,欢迎订阅! 个人品牌:如何在 Github 打造你的爆款开源项目 由@Siva海浪高 分享在gaohailang. 当我们在 Github 上抛出自己的开源项目,都希望 Repo…
距离 2016 年到来只剩 10 个日夜,fir.im 也准备了一些新鲜的东西,比如「高级统计」功能和「跳转应用商店」功能,帮助你更好地管理.优化应用,欢迎大家试用反馈:) 新增高级统计功能 这次更新的高级统计功能,可以根据渠道和活动名称,统计不同渠道和活动带来的下载量.操作步骤如下: 第一步:生成统计链接 点击高级统计,进入统计详情页,然后点击生成统计链接: 设置统计链接的应用版本.渠道名称和活动名称,填写完毕后点击保存: 保存后,可在链接统计处查看已生成的统计链接和二维码. 第二步:将统计链…
Notepad++ 是个相当好用的免费纯文本编辑器,除了内建的功能相当多之外,也支持外挂模块的方式扩充各方面的应用.以前我都用 UltraEdit 跟 Emeditor,后来都改用免费的 Notepad++ 来编辑程序.写网站文章. 以下介绍一个简单的小应用,如果你偶尔需要同时开启两个不同的文件来检视.比对内容的话,该如何在分割窗口的两边同时展示两个不同文件的内容呢?其实很简单: 对于简体中文版本,按「视图」→「移动/复制当前文档」→「移动到另一视图」,然后单击工具栏上的「垂直同步滚动」按钮或「…
最近在实验室做一些 Zigbee 相关的事情,然而一直没在博客上记录啥东西,也不像原来在公司有动力在 Confluence wiki 上扯东扯西.直到前些阵子,跑到 feibit 论坛上(国内较大的一个 Zigbee 社区),发现有不少刚接触 Zigbee 的朋友,在上面提问:其中有不少问题,我或多或少接触了一些,于是心想,索性在博客上开辟一个类别扯扯 Zigbee 好了. 一来,可以做为一个记录,尤其是今天碰到一个计算结构体偏移量的宏定义,想起之前在 blogspot 上写过一篇「赞叹」Lin…
写完「C语言」单链表/双向链表的建立/遍历/插入/删除 后,如何将内存中的链表信息及时的保存到文件中,又能够及时的从文件中读取出来进行处理,便需要用到”文件“的相关知识点进行文件的输入.输出. 其实,就算不懂得链表,也完全可以学习”文件“相关知识点,但在此之前最好有”指针“基础. 本篇文章整理自<C语言程序设计教程--人民邮电出版社>第十二章——文件,以作文件探讨. 一.数据流与文件概念 二.文件的打开与关闭 三.文件的顺序读写 四.文件的随机读写 五.出错检查 六.低级I/O函数与标准I/O…
之前写过一篇 「C语言」在Windows平台搭建C语言开发环境的多种方式 ,讨论了如何在Windows下用DEV C++.EclipseCDT.VisualStudio.Sublime Test.Clion等IDE/编辑器搭建C语言开发环境,但也只是点到为止的介绍,对每一个开发环境的选择没有详细的步骤与过程: 这次借助C语言期末课程设计文档上介绍用Eclipse开发C语言的时机,逐步图文论证如何用Eclipse从安装到输出自己的第一个C语言Hello World: 欢迎探讨,欢迎互粉: 目录:…
WhatsApp 强制推出新功能「蓝色双勾 (✔✔)」 ,让对方知道你已经看过讯息.一众用户反应极大,因为以后不能再藉口说未看到讯息而不回覆.究竟以后 WhatsApp 是否真的「更难用」? 幸好还有方法可以让你偷看新讯息. 1. 在通知列 (Notification Bar)看当接收到新 WhatsApp 讯息时,无论 iOS / Android 都会在通知列弹出,在那里其实已经可以看到讯息预览.如果是短短的讯息,已经能整个看到.只要不按下去,不开启出来,就不会变成蓝勾.如果讯息太长,就要靠之…
原文出處  http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/19/multiple_fileupload_asp_net_20130819.aspx FileUpload控件「批次上传 / 多档案同时上传」的范例--以「流水号」产生「变量名称」 之前的两个范例: [C# / ASP.NET]FileUpload控件「批次上传 / 多档案同时上传」的范例(C#语法) [VB / ASP.NET]FileUpload控件「批次上传 / 多档…