论文源址:https://arxiv.org/abs/1504.08083 参考博客:https://blog.csdn.net/shenxiaolu1984/article/details/51036677 摘要 该文提出了一个快速的基于区域框的卷积网络用于目标检测任务.Fast RCNN使用深度卷积网络对proposals进行分类.相比先前的工作,Fast R-CNN在提高准确率的基础上提高了训练和测试的速度.在VGG19的网络中,Fast R-CNN训练时间比R-CNN快9倍,而测试要快2…
论文源址:https://arxiv.org/pdf/1703.06870.pdf 开源代码:https://github.com/matterport/Mask_RCNN 摘要 Mask R-CNN可以在进行检测的同时,进行高质量的分割操作.基于Faster R-CNN并进行扩展,增加了一个分支在进行框识别的同时并行的预测目标的mask.Mask R-CNN易于训练,相比Faster R-CNN增加了一点点花销.此外,Mask R-CNN可以很容易扩展至其他任务中.如关键点检测.本文在COCO…
论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入固定尺寸大小的图片(224x224),这引入了大量的手工因素,同时,一定程度上,对于任意尺寸的图片或者子图会降低识别的准确率.SPP-net对于任意大小的图片,可以生成固定长度的特征表述.SPP-net对于变形的图片仍有一定的鲁棒性.基于上述优点,SPP-net会提高基于CNN的图像分类的效果. S…
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进行结合.该文的两个亮点:(1)将CNN应用到region proposals 用于对目标物体的定位.(2)对于较少数量的标签数据,先在规模较大的数据集上进行有监督的预训练,然后针对特定场景进行微调,发现性能提升的较大.R-CNN:region with CNN features 介绍 特征问题:视觉…
论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以结合特征金字塔嵌入到单阶段检测器中.FSAF解决了传统基于anchor机制的两个限制:(1)启发式的特征选择(2)overlap-based anchor采样.FSAF的通用解释是将在线特征选择应用于与anchor无关的分支的训练上.即无anchor的分支添加到特征金字塔的每一层,从而可以以任意层次对box进行编码解码.训练过程中,将…
论文源址:https://arxiv.org/abs/1512.02325 tensorflow代码:https://github.com/balancap/SSD-Tensorflow 摘要 SSD也为单阶段的网络,在feature map的每个feature map像素上生成一系列不同尺寸与大小的默认框,预测时,网络输出的分数代表每个默认框中目标物的类别,同时,调整框的大小与目标物的外形更加匹配.针对不同尺寸大小的物体,网络结合不同的网络层(具有不同的分辨率)的预测值.相对于提取目标prop…
论文源址:https://arxiv.org/abs/1506.02640 tensorflow代码:https://github.com/nilboy/tensorflow-yolo 摘要 该文提出一种新的目标检测网络,yolo,以前的目标检测问题偏向于分类,而本文将目标检测看作是带有类别分数的回归问题.yolo从整张图上预测边界框和类别分数.是单阶段网络,可以进行端到端的训练.yolo处理速度十分迅速,每秒处理45帧图片.yolo在准确率上有待提升,但很少预测出假正的样例. 介绍 yolo的…
论文源址:https://arxiv.org/abs/1605.09410 tensorflow 代码:https://github.com/renmengye/rec-attend-public 摘要 卷积网络在像语义分割等结构预测任务中效果较好,但对于场景中不同实例个体分割仍存在一定的挑战性.实例分割有很多应用场景,比如,自动驾驶,图像捕捉,智能视频问答系统等.将大量的图形模型与低层次的可视化信息相结合用于实例分割.该文提出了一个端到端的带有注意力机制的RNN结构,来进行精细的实例分割.该网…
源文网址:https://arxiv.org/abs/1707.03718 tensorflow代码:https://github.com/luofan18/linknet-tensorflow 基于Linknet的分割实验:https://github.com/fourmi1995/IronSegExperiment-LinkNet 摘要 像素级分割不仅准确率上有要求,同时需要应用的实际中实时的应用中.虽然精度上较高,但参数与操作上的数量都是十分巨大的.本文提出的网络结构参数并未增加.只使用了…
论文原址:https://arxiv.org/abs/1901.08043 github: https://github.com/xingyizhou/ExtremeNet 摘要 本文利用一个关键点检测网络来检测目标物的最左边,最右边,顶部,底部及目标物中心五个点.如果这几个点在几何空间上对齐,则生成一个边界框.目标检测进而演变为基于外形的关键点检测问题,不需要进行区域分类及复杂的特征学习. 介绍 Top-Down方法占据目标检测中的主要地位,一些流行的目标检测算法通过直接裁剪区域或者特征,或者…