矩阵图非常有用,人们经常用它来查看多个变量之间的联系. 下面用著名的鸢尾花数据来画一个矩阵图.从sklearn导入鸢尾花数据,然后将其转换成pandas的DataFrame类型,最后用seaborn画图.(seaborn包里也有这个数据,也可以直接从seaborn包导入此数据) 矩阵图: sns.pairplot(data,hue=...)   ---   hue为data里的数据,用其来显示不同颜色 由于data需要的格式为每列是变量(在这里是鸢尾花的四个特征),每行则是各变量的观测数据,因此…
由于直方图受组距(bin size)影响很大,设置不同的组距可能会产生完全不同的可视化结果.因此我们可以用密度平滑估计来更好地反映数据的真实特征.具体可参见这篇文章:https://blog.csdn.net/unixtch/article/details/78556499. 还是用我们自己创建的一组符合正态分布的数据来画图. 准备工作:先导入matplotlib,seaborn和numpy,然后创建一个图像和一个坐标轴 import numpy as np from matplotlib im…
有时我们不仅需要查看单个变量的分布,同时也需要查看变量之间的联系,这时就需要用到联合分布图. 这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图. 数据地址:http://raw.githubusercontent.com/jakevdp/marathon-data/master/marathon-data.csv 先来看一下这个数据文件(此处只摘取部分): age gender split final 0 33 M 01:05:38 02:08:5…
首先安装matplotlib,使用pip install matplotlib.安装完成后在python的命令行敲入import matplotlib,如果没问题,说明安装成功可以开始画图了. 看好了,见证奇迹的时刻 from matplotlib import pyplot as plt plt.plot([1,2,3,4,5],[4,3,4,3,4]) #在画布上画图 plt.show() #显示画布 画线,需要给出线上的点的坐标,然后Matplotlib会自动将点连成线.我们看到两个点的坐…
mplot3d是matplotlib里用于绘制3D图形的一个模块.关于mplot3d 绘图模块的介绍请见:https://blog.csdn.net/dahunihao/article/details/77833877. 莫比乌斯环(mobius strip)是一种只有一个曲面的拓扑结构.把一个纸条扭转180°后,两头再粘接起来,这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘. 莫比乌斯环是一个二维的紧致流形 (即一个有边界的面),可以嵌入到三维或更高维的流形中…
画词云首先需要安装wordcloud(生成词云)和jieba(中文分词). 先来说说wordcloud的安装吧,真是一波三折.首先用pip install wordcloud出现错误,说需要安装Visual C++ 14.0.折腾半天安装好Visual C++后,还是不行,按网上指点,下载第三方包安装(https://www.lfd.uci.edu/~gohlke/pythonlibs/#wordcloud).安装是成功了,可是在anaconda里导入的时候又出现了问题,说是"no module…
直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/crimeRatesByState2005.csv 以下是这个数据文件的前5行: state murder forcible_rape robbery aggravated_assault \ 0 United States 5.6 31.7 140.7 291…
Matplotlib有两种接口,一种是matlab风格接口,一种是面向对象接口.在这里,统一使用面向对象接口.因为面向对象接口可以适应更复杂的场景,在多图之间进行切换将变得非常容易. 首先导入matplotlib:from matplotlib import pyplot as plt.plt是最常用的接口. 一. 创建图像和坐标轴 fig=plt.figure()   ---   创建图像 ax=plt.axes()   ---   创建坐标轴 在matplotlib中,可以把figure看成…
箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字. I-------------I o I-------------I o I-------------I o I-------------I Q1                Q2                 Q3 (lower quartile) …
这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图. 数据地址:https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv 准备工作:先导入matplotlib和pandas,用pandas读取csv文件,然后创建一个图像和一个坐标轴 import pandas as pd from matplotlib import pyplot as plt birth=p…