本文转载自:http://blog.csdn.net/itplus/article/details/9337515…
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值,与y相减则是一个相对误差.之后再平方乘以1/2,而且当中 注意到x能够一维变量.也能够是多维变量,实际上最经常使用的还是多维变量. 我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候.应该是沿着梯度的反方向进行权重的更新.能够有效的找到全局的最优解. 这个θ的更新过…
梯度下降和随机梯度下降 梯度下降在深度学习中很少被直接使用,但理解梯度的意义以及沿着梯度反方向更新自变量可能降低目标函数值的原因是学习后续优化算法的基础.随后,将引出随机梯度下降(stochastic gradient descent). 一维梯度下降 以简单的一维梯度下降为例,解释梯度下降算法可能降低目标函数值的原因.假设连续可导的函数f:ℝ→ℝ的输入和输出都是标量.给定绝对值足够小的数ϵ,根据泰勒展开公式,得到以下的近似: 学习率 梯度下降算法中的正数η通常叫作学习率.这是一个超参数,需要人…
https://www.cnblogs.com/alexYuin/p/7039234.html # 概念 LMS(least mean square):(最小均方法)通过最小化均方误差来求最佳参数的方法. GD(gradient descent) : (梯度下降法)一种参数更新法则.可以作为LMS的参数更新方法之一. The normal equations : (正则方程式,将在下一篇随笔中介绍)一种参数更新法则.也可以作为LMS的参数更新方法之一. 三者的联系和区别:LMS是一种机器学习算法…
问题的引入: 考虑一个典型的有监督机器学习问题,给定m个训练样本S={x(i),y(i)},通过经验风险最小化来得到一组权值w,则现在对于整个训练集待优化目标函数为: 其中为单个训练样本(x(i),y(i))的损失函数,单个样本的损失表示如下: 引入L2正则,即在损失函数中引入,那么最终的损失为: 注意单个样本引入损失为(并不用除以m): 正则化的解释 这里的正则化项可以防止过拟合,注意是在整体的损失函数中引入正则项,一般的引入正则化的形式如下: 其中L(w)为整体损失,这里其实有: 这里的 C…
airfoil4755 下载 链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA 提取码:dwjq 梯度下降 (Boyd & Vandenberghe, 2004) %matplotlib inline import numpy as np import torch import time from torch import nn, optim import math import sys sys.path.append('/home/kesci…
样本个数m,x为n维向量.h_theta(x) = theta^t * x梯度下降需要把m个样本全部带入计算,迭代一次计算量为m*n^2 随机梯度下降每次只使用一个样本,迭代一次计算量为n^2,当m很大的时候,随机梯度下降迭代一次的速度要远高于梯度下降…
梯度下降代码: function [ theta, J_history ] = GradinentDecent( X, y, theta, alpha, num_iter ) m = length(y); J_history = zeros(20, 1); i = 0; temp = 0; for iter = 1:num_iter     temp = temp +1;     theta = theta - alpha / m * X' * (X*theta - y);     if tem…
以上几个概念之前没有完全弄清其含义及区别,容易混淆概念,在本文浅析一下: 一.online learning vs batch learning online learning强调的是学习是实时的,流式的,每次训练不用使用全部样本,而是以之前训练好的模型为基础,每来一个样本就更新一次模型,这种方法叫做OGD(online gradient descent).这样做的目的是快速地进行模型的更新,提升模型时效性. online learning其实细分又可以分为batch模式和delta模式.bat…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 实例 首先举个例子,假设我们有一个二手房交易记录的数据集,已知房屋面积.卧室数量和房屋的交易价格,如下表: 假如有一个房子要卖,我们希望通过上表中的数据估算这个房子的价格.这个问题就是典型的回归问题,这边文章主要讲回归中的线性回归问题. 线性回归(Linear Regression) 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值.假设特征和结果满足线性关系,即满足一个…