第五节,损失函数:MSE和交叉熵】的更多相关文章

损失函数用于描述模型预测值与真实值的差距大小,一般有两种比较常见的算法——均值平方差(MSE)和交叉熵. 1.均值平方差(MSE):指参数估计值与参数真实值之差平方的期望值. 在神经网络计算时,预测值要与真实值控制在同样的数据分布内,假设将预测值经过Sigmoid激活函数得到取值范围在0~1之间,那么真实值也归一化到0~1之间. 2.交叉熵:预测输入样本属于某一类的概率. 其中y代表真实值分类(0或1),a代表预测值,交叉熵值越小,预测结果越准. 3.损失函数的选取 损失函数的选取取决于输入标签…
二分~多分~Softmax~理预 一.简介 在二分类问题中,你可以根据神经网络节点的输出,通过一个激活函数如Sigmoid,将其转换为属于某一类的概率,为了给出具体的分类结果,你可以取0.5作为阈值,凡是大于0.5的样本被认为是正类,小于0.5则认为是负类 然而这样的做法并不容易推广到多分类问题.多分类问题神经网络最常用的方法是根据类别个数n,设置n个输出节点,这样每个样本,神经网络都会给出一个n维数组作为输出结果,然后我们运用激活函数如softmax,将输出转换为一种概率分布 其中的每一个概率…
经典的损失函数: ①交叉熵(分类问题):判断一个输出向量和期望向量有多接近.交叉熵刻画了两个概率分布之间的距离,他是分类问题中使用比较广泛的一种损失函数.概率分布刻画了不同事件发生的概率. 熵的定义:解决了对信息的量化度量问题,香农用信息熵的概念来描述信源的不确定度,第一次用数学语言阐明了概率与信息冗余度的关系.  从统计方面看交叉熵损失函数的含义: Softmax:原始神经网路的输出被作用在置信度来生成新的输出,新的输出满足概率分布的所有要求.这样就把神经网络的输出变成了一个概率分布,从而可以…
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激活函数:引入非线性激活因素,提高模型的表达能力 常用的激活函数有relu.sigmoid.tanh等 (1)激活函数relu:在Tensorflow中,用tf.nn.relu()表示 (2)激活函数sigmoid:在Tensorflow中,用tf.nn.sigmoid()表示 (3)激活函数tanh…
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是ResNet取消了全连接层,也会在最后有一个1000个节点的输出层: 一般情况下,最后一个输出层的节点个数与分类任务的目标数相等.假设最后的节点数为N,那么对于每一个样例,神经网络可以得到一个N维的数组作为输出结果,数组中每一个维度会对应一个类别.在最理想的情况下,如果一个样本属于k,那么这个类别所对…
神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, 得分函数表示最后一层的输出结果,得分函数的维度对应着样本的个数和标签的类别数 得分结果的实例说明:一个输入样本的特征值Xi 1*4, w表示权重参数3*4,这里使用的是全连接y = w * x.T,输出结果为3*1, 这3个结果分别表示3种标签的得分值 代码说明: out = np.dot(x_ro…
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q(x) 当事件总数是一定的时候, 概率函数满足:   任意x  p(X = x) ∈[0, 1] 且 Σ p(X=x) = 1 也就是说 所有时间发生的概率都是0到1 之间 , 且总有一个时间会发生,概率的和就为1. 2 tensorflow中softmax: softmax回归可以作为学习算法来优化…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
1. 二项分布 二项分布也叫 0-1 分布,如随机变量 x 服从二项分布,关于参数 μ(0≤μ≤1),其值取 1 和取 0 的概率如下: {p(x=1|μ)=μp(x=0|μ)=1−μ 则在 x 上的概率分布为: Bern(x|μ)=μx(1−μ)1−x 2. 服从二项分布的样本集的对数似然函数 给定样本集 D={x1,x2,-,xB} 是对随机变量 x 的观测值,假定样本集从二项分布 p(x|μ) 中独立(p(x1,x2,-,xN)=∏ip(xi))采样得来,则当前样本集关于 μ 的似然函数为…