【Cuda编程】加法归约】的更多相关文章

目录 cuda编程并行归约 AtomicAdd调用出错 gpu cpu下时间计算 加法的归约 矩阵乘法 矩阵转置 统计数目 平方和求和 分块处理 线程相邻 多block计算 cuda编程并行归约 AtomicAdd调用出错 在cuda中调用atomicAdd函数,但总显示未定义标识符,在网上送了一下,于是做了如下修改, 右键解决方案属性->配置属性->CUDA C/C++->Device->Code Generation,加入compute_20,sm_20,并且把下面的"…
CUDA编程实战书中的乘方和解决办法: 对一个数组执行某种计算,然后产生一个更小的结果数组. 由一个线程在共享内存上进行迭代并计算出总和值.而如果用并行,所花时间就与数组长度的对数成正比. 代码的思想是,每个线程将cache[]中的两个值加和,然后结果保存回cache[].由于每个线程都将两个值合并为一个值,那么在完成这个步骤后,得到的结果数量就是计算开始时数值数量的一半.在下一个步骤中,我们对这一半数值执行相同的操作.在将这种操作执行log2(threadsPerBlock)个步骤后,就能得到…
CUDA编程(六) 进一步并行 在之前我们使用Thread完毕了简单的并行加速,尽管我们的程序运行速度有了50甚至上百倍的提升,可是依据内存带宽来评估的话我们的程序还远远不够.在上一篇博客中给大家介绍了一个訪存方面非常重要的优化.我们通过使用连续的内存存取模式.取得了令人惬意的优化效果,终于内存带宽也达到了GB/s的级别. 之前也已经提到过了,CUDA不仅提供了Thread.还提供了Grid和Block以及Share Memory这些非常重要的机制,我的显卡的Thread极限是1024,可是通过…
CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要的工具,CUDA是做视觉的同学难以绕过的一个坑,必须踩一踩才踏实.CUDA编程真的是入门容易精通难,具有计算机体系结构和C语言编程知识储备的同学上手CUDA编程应该难度不会很大.本文章将通过以下五个方面帮助大家比较全面地了解CUDA编程最重要的知识点,做到快速入门: GPU架构特点 CUDA线程模型…
CUDA编程(十) 使用Kahan's Summation Formula提高精度 上一次我们准备去并行一个矩阵乘法.然后我们在GPU上完毕了这个程序,当然是非常单纯的把任务分配给各个线程.也没有经过优化.终于我们看到,执行效率相当的低下,可是更重要的是出现了一个我们之前做整数立方和没遇到的问题,那就是浮点数精度损失的问题. 关注GPU运算的精度问题: 在程序的最后.我们计算了精度误差,发现最大相对误差偏高,而一般理想上应该要低于 1e-6. 我们之前将评估CUDA程序的时候也提过了.精度是CU…
CUDA编程模型是一个异构模型,需要CPU和GPU协同工作. host和device host和device是两个重要的概念 host指代CPU及其内存 device指代GPU及其内存 __global__: host调用,device上执行 __device__:device调用,device执行 __host__:host调用, host执行 典型编程流程 分配host内存,并进行数据初始化 分配device内存,并从host将数据拷贝到device上 调用CUDA的核函数在device上完…
https://www.cnblogs.com/skyfsm/p/9673960.html CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要的工具,CUDA是做视觉的同学难以绕过的一个坑,必须踩一踩才踏实.CUDA编程真的是入门容易精通难,具有计算机体系结构和C语言编程知识储备的同学上手CUDA编程应该难度不会很大.本文章将通过以下五个方面帮助大…
1 无法装上CUDA的toolkit 卸载所有的NVIDIA相关的app,包括NVIDIA的显卡驱动,然后重装. 2之前的文件打不开,one or more projects in the solution were not loaded correctly. please see the output window for details. 要先配置和用cuda编程在vs中需要的设置,并且要注意包括cuda的很多头文件. 可以新建一个项目,然后将xx.cu里头的内容拷贝进去. 新建一个项目需要…
转自: http://blog.csdn.net/augusdi/article/details/12529247 CUDA编程模型 CUDA编程模型将CPU作为主机,GPU作为协处理器(co-processor)或设备.在这个模型中,CPU负责逻辑性强的事务处理和串行计算,GPU则专注于高度线程化的并行处理任务.CPU.GPU各自拥有相互独立的存储器地址空间. 一旦确定了程序中的并行部分,就可以考虑把这部分计算工作交给GPU. kernel:运行在GPU上的C函数称为kernel.一个kern…
转自:http://blog.sina.com.cn/s/blog_48b9e1f90100fm56.html CUDA的代码分成两部分,一部分在host(CPU)上运行,是普通的C代码:另一部分在device(GPU)上运行,是并行代码,称为kernel,由nvcc进行编译. Kernel产生的所有线程成为Grid.在并行部分结束后,程序回到串行部分即到host上运行. 在CUDA中,host和device有不同的内存空间.所以在device上执行kernel时,程序员需要把host memo…