大数据 Hive 简介】的更多相关文章

第一部分:Hive简介 什么是Hive •Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. •本质是将SQL转换为MapReduce程序    第二部分:为什么使用Hive 面临的问题   人员学习成本太高   项目周期要求太短   我只是需要一个简单的环境   MapReduce  如何搞定   复杂查询好难   Join如何实现 为什么要使用Hive •操作接口采用类SQL语法,提供快速开发的能力 •避免了去写MapReduce…
一.前言 Hive默认计算引擎时MR,为了提高计算速度,我们可以改为Tez引擎.至于为什么提高了计算速度,可以参考下图: 用Hive直接编写MR程序,假设有四个有依赖关系的MR作业,上图中,绿色是Reduce Task,云状表示写屏蔽,需要将中间结果持久化写到HDFS. Tez可以将多个有依赖的作业转换为一个作业,这样只需写一次HDFS,且中间节点较少,从而大大提升作业的计算性能. 二.安装包准备 1)下载tez的依赖包:http://tez.apache.org 2)拷贝apache-tez-…
Hive出现的背景 Hadoop提供了大数据的通用解决方案,比如存储提供了Hdfs,计算提供了MapReduce思想.但是想要写出MapReduce算法还是比较繁琐的,对于开发者来说,需要了解底层的hadoop api.如果不是开发者想要使用mapreduce就会很困难.... 另一方面,大部分的开发者都有使用SQL的经验.SQL成为开发者必备的技能... 那么可以不可以使用SQL来完成MapReduce的过程呢?-- 答案就是,Hive Hive能够解决的问题 Hive可以帮助开发者从现有的数…
SQL里面通常都会用Join来连接两个表,做复杂的关联查询.比如用户表和订单表,能通过join得到某个用户购买的产品:或者某个产品被购买的人群.... Hive也支持这样的操作,而且由于Hive底层运行在hadoop上,因此有很多地方可以进行优化.比如小表到大表的连接操作.小表进行缓存.大表进行避免缓存等等... 下面就来看看hive里面的连接操作吧!其实跟SQL还是差不多的... 数据准备:创建数据-->创建表-->导入数据 首先创建两个原始数据的文件,这两个文件分别有三列,第一列是id.第…
前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的内容详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 1. hive知识点(2) 第12点:hive分桶表 hive知识点主要偏实践,很多人会认为基本命令不用记,但是万丈高楼平地起,基本命令无论多基础,都要好好练习,多实践. 在hive中,分桶是相对分区进行更加细粒的划分.其中分区针对的是数据的存储路径,而分桶针对的是数据文件,老刘用两张相关的图对比一下,就能明白刚刚说的区别了. 第一张是表进行分区后变化: 第二张是表进行分桶后的…
前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的内容详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 1. hive知识点(3) 从这篇文章开始决定进行一些改变,老刘在博客上主要分享大数据每个模块的重点知识点,对这些重点内容进行详细解释,每个模块的完整知识点分享在公众号:努力的老刘.等有机会了,用视频的方式先对每次分享的知识点进行一次分析和总结,再发文章进行详细的解释. 现在开始正文,还是那句话,虽然这些都是hive的常用函数,很多人不在意,但是日常开发中会遇到很多业务需要用到…
构建在Hadoop之上的数据仓库,数据计算使用MR,数据存储使用HDFS         由于数据计算使用mapreduce.因此通经常使用于进行离线数据处理 Hive 定义了一种类 SQL 查询语言--HQL         类似SQL,但不全然同样 可觉得是一个HQL-->MR的语言翻译器. 简单,easy上手 有了Hive,还须要自己写MR程序吗?         Hive的HQL表达的能力有限                 迭代式算法无法表达                 有些复杂运…
这篇文章主要介绍Hive的概念. 简介: Hive中文名叫数据仓库管理系统,之前我们操作MapReduce必须通过编写代码或者通过特殊命令来实现,有了Hive我们通过常用的SQL语句就能操作MapReduce集群了.是不是感觉很方便. 这也是方便不懂MapReduce原理,懂SQL语句的人用的. 有好几个公司都推出了自己的Hive,其中比较出名的是Apache Hive,CDH Hive,HDP Hive和MapR Hive,大家刚开始学习大部分都用的Apache Hive,但是公司中却很少使用…
Hive作为大数据环境下的数据仓库工具,支持基于hadoop以sql的方式执行mapreduce的任务,非常适合对大量的数据进行全量的查询分析. 本文主要讲述下hive载cli中如何导入导出数据: 导入数据 第一种方式,直接从本地文件系统导入数据 我的本机有一个test1.txt文件,这个文件中有三列数据,并且每列都是以'\t'为分隔 [root@localhost conf]# cat /usr/tmp/test1.txt 1 a1 b1 2 a2 b2 3 a3 b3 4 a4 b 创建数据…
一.分区表 1.1 概念 Hive 中的表对应为 HDFS 上的指定目录,在查询数据时候,默认会对全表进行扫描,这样时间和性能的消耗都非常大. 分区为 HDFS 上表目录的子目录,数据按照分区存储在子目录中.如果查询的 where 字句的中包含分区条件,则直接从该分区去查找,而不是扫描整个表目录,合理的分区设计可以极大提高查询速度和性能. 这里说明一下分区表并 Hive 独有的概念,实际上这个概念非常常见.比如在我们常用的 Oracle 数据库中,当表中的数据量不断增大,查询数据的速度就会下降,…
一.视图 1.1 简介 Hive 中的视图和 RDBMS 中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条 SELECT 语句的结果集.视图是纯粹的逻辑对象,没有关联的存储 (Hive 3.0.0 引入的物化视图除外),当查询引用视图时,Hive 可以将视图的定义与查询结合起来,例如将查询中的过滤器推送到视图中. 1.2 创建视图 CREATE VIEW [IF NOT EXISTS] [db_name.]view_name -- 视图名称 [(column_name [COMMENT…
一.数据准备 为了演示查询操作,这里需要预先创建三张表,并加载测试数据. 数据文件 emp.txt 和 dept.txt 可以从本仓库的resources 目录下载. 1.1 员工表 -- 建表语句 CREATE TABLE emp( empno INT, -- 员工表编号 ename STRING, -- 员工姓名 job STRING, -- 职位类型 mgr INT, hiredate TIMESTAMP, --雇佣日期 sal DECIMAL(7,2), --工资 comm DECIMA…
一.Flume简介 Apache Flume 是一个分布式,高可用的数据收集系统.它可以从不同的数据源收集数据,经过聚合后发送到存储系统中,通常用于日志数据的收集.Flume 分为 NG 和 OG (1.0 之前) 两个版本,NG 在 OG 的基础上进行了完全的重构,是目前使用最为广泛的版本.下面的介绍均以 NG 为基础. 二.Flume架构和基本概念 下图为 Flume 的基本架构图: 2.1 基本架构 外部数据源以特定格式向 Flume 发送 events (事件),当 source 接收到…
一.Sqoop 简介 Sqoop 是一个常用的数据迁移工具,主要用于在不同存储系统之间实现数据的导入与导出: 导入数据:从 MySQL,Oracle 等关系型数据库中导入数据到 HDFS.Hive.HBase 等分布式文件存储系统中: 导出数据:从 分布式文件系统中导出数据到关系数据库中. 其原理是将执行命令转化成 MapReduce 作业来实现数据的迁移,如下图: 二.安装 版本选择:目前 Sqoop 有 Sqoop 1 和 Sqoop 2 两个版本,但是截至到目前,官方并不推荐使用 Sqoo…
一.简介 Spark 于 2009 年诞生于加州大学伯克利分校 AMPLab,2013 年被捐赠给 Apache 软件基金会,2014 年 2 月成为 Apache 的顶级项目.相对于 MapReduce 的批处理计算,Spark 可以带来上百倍的性能提升,因此它成为继 MapReduce 之后,最为广泛使用的分布式计算框架. 二.特点 Apache Spark 具有以下特点: 使用先进的 DAG 调度程序,查询优化器和物理执行引擎,以实现性能上的保证: 多语言支持,目前支持的有 Java,Sc…
Hive是为了解决hadoop中mapreduce编写困难,提供给熟悉sql的人使用的.只要你对SQL有一定的了解,就能通过Hive写出mapreduce的程序,而不需要去学习hadoop中的api. 在部署前需要确认安装jdk以及Hadoop 如果需要安装jdk以及hadoop可以参考我之前的博客: Linux下安装jdk Linux下安装hadoop伪分布式 在安装之前,先了解下Hive都有哪些东西. 下载并解压缩 去主页选择镜像地址: http://www.apache.org/dyn/c…
Hive 启动 ~$ hive 退出 hive>quit; --退出hive or hive> exit; --exit会影响之前的使用,所以需要下一句kill掉hadoop的进程 >hadoop job -kill jobid 选择使用哪个数据库 hive> use database_name; --使用哪个数据库 查看数据表结构 hive> describe tab_name; or desc tab_name; --查看表的结构及表的路径 查看数据库的描述及路径 hiv…
1. 题目说明 设计题:MySQL数据库A有1000w条数据,完成统计再输入到另外的B表中 A表 test1 0.2,3.5,1,1test1 1.2,2.3,4.56test2 2.1,0.3,9.2,3.5,2.4test3 2.1,4.5,3.4,7.65test4 1.2,3.4,54,32.1,12.3test5 12.1,12.3test5 12.34test5 0.01,0.02test6 2.3,45.3,23.21test6 23.4,23,22.12 B表 test1 0.2…
本博客主要介绍Hive和MySql的搭建:  学习视频一天就讲完了,我看完了自己搭建MySql遇到了一堆坑,然后花了快两天才解决完,终于把MySql搭建好了.然后又去搭建Hive,又遇到了很多坑,就这样一直解决问题,加上网上搜索和个人排查检查日志.搜索百度,百度不行搜索Bing,看了csdn,看strackflow,最后终于功夫不负有心人,成功把MySql和Hive跑起来了.这里我将还原最初状态,并把遇到的坑一并记录下,同时防止后人采坑. 搭建环境: Centos7,MySql14.14,Hiv…
一.Database 1.1 查看数据列表 show databases; 1.2 使用数据库 USE database_name; 1.3 新建数据库 语法: CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name --DATABASE|SCHEMA 是等价的 [COMMENT database_comment] --数据库注释 [LOCATION hdfs_path] --存储在 HDFS 上的位置 [WITH DBPROPERTIES…
一.简介 ApacheKafka 是一个分布式的流处理平台.它具有以下特点: 支持消息的发布和订阅,类似于 RabbtMQ.ActiveMQ 等消息队列: 支持数据实时处理: 能保证消息的可靠性投递: 支持消息的持久化存储,并通过多副本分布式的存储方案来保证消息的容错: 高吞吐率,单 Broker 可以轻松处理数千个分区以及每秒百万级的消息量. 二.基本概念 2.1 Messages And Batches Kafka 的基本数据单元被称为 message(消息),为减少网络开销,提高效率,多个…
Hive 常用DML操作 一.加载文件数据到表 1.1 语法 LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] LOCAL 关键字代表从本地文件系统加载文件,省略则代表从 HDFS 上加载文件: 从本地文件系统加载文件时, filepath 可以是绝对路径也可以是相对路径 (建议使用绝对路径): 从 HDFS 加载文…
前言:老刘不敢说写的有多好,但敢保证尽量用大白话把自己复习的知识点详细解释出来,拒绝资料上的生搬硬套,做到有自己的了解! 01 hive知识点(1) 第1点:数据仓库的概念 由于hive它是基于hadoop的一个数据仓库工具,老刘先讲讲数据仓库的一些东西,再开始讲hive. 数据仓库,听名字就知道它是用来存放数据的一个仓库,仓库不同于工程,仓库只用来存放东西,不生产,也不消耗. 精简的讲,数据仓库它本身不生产数据,也不会消耗数据,数据从外部来,供给外部使用,主要用于数据分析,对企业的支持决策做一…
1.3 Hive的安装(前提是:mysql和hadoop必须已经成功启动了) 在之前博客中我有记录安装JDK和Hadoop和Mysql的过程,如果还没有安装,请先进行安装配置好,对应的随笔我也提供了百度云下载连接. 安装JDK: https://www.cnblogs.com/wyh-study/p/12014368.html 安装Hadoop https://www.cnblogs.com/wyh-study/p/12043948.html 安装Mysql https://www.cnblog…
1.下载Hive需要的版本 我们选用的是hive-3.1.0 将下载下来的hive压缩文件放到/opt/workspace/下 2.解压hive-3.1.0.tar.gz文件 [root@master1 workspace]# tar -zxvf apache-hive--bin.tar.gz 3.重命名 [root@master1 workspace]# mv apache-hive--bin hive- 4.因为我们的hive运行在hive on spark 所以需要在lib文件下加入jar…
1. hive的简介(具体见文档) Hive是分析处理结构化数据的工具   本质:将hive sql转化成MapReduce程序或者spark程序 Hive处理的数据一般存储在HDFS上,其分析数据底层的实现是MapReduce/spark,执行程序运行在Yarn上 其大致可以按如下图理解(具体可见HIVE文档) sql语句是对某个表进行操作,所以hive一定要创建一个表格,这个表格必须要映射到hdfs中某个具体的文件才行,而映射关系.表的结构数据以及hdfs中数据的存储结构都会在创建表时规定,…
大数据工具篇之Hive与MySQL整合完整教程 一.引言 Hive元数据存储可以放到RDBMS数据库中,本文以Hive与MySQL数据库的整合为目标,详细说明Hive与MySQL的整合方法. 二.安装驱动 MySQL最新的Java驱动版本为:mysql-connector-java-5.1.28-bin.jar,下载后拷贝到:Hive/Lib目录. 三.安装MySQL 3.1 版本 RHEL5+mysql-5.5.35-1.i386.rpm 3.2 顺序 MySQL-shared-compat-…
今天,上海尚学堂大数据培训班毕业的一位学生去参加易普软件公司面试,应聘的职位是大数据开发.面试官问了他10个问题,主要集中在Hbase.Spark.Hive和MapReduce上,基础概念.特点.应用场景等问得多.看来,还是非常注重基础的牢固.整个大数据开发技术,这几个技术知识点占了很大一部分.那本篇文章就着重介绍一下这几个技术知识点. 一.Hbase 1.1.Hbase是什么? HBase是一种构建在HDFS之上的分布式.面向列的存储系统.在需要实时读写.随机访问超大规模数据集时,可以使用HB…
序言:在大数据领域存在一个现象,那就是组件繁多,粗略估计一下轻松超过20种.如果你是初学者,瞬间就会蒙圈,不知道力往哪里使.那么,为什么会出现这种现象呢?在本文的开头笔者就简单的阐述一下这种现象出现的原因,相信对一直陪伴笔者的你会有所帮助. 行文思路 大数据组件来源 Hive简介 定义 hive特点 hive基本语法 Hive原理 hive架构图 hive内核 hive底层存储 hive程序执行过程 hive元数据存储 hive客户端 Hive调优 基于mapreduce优化 合理设置map数…
impala2.12 官方:http://impala.apache.org/ 一 简介 Apache Impala is the open source, native analytic database for Apache Hadoop. Impala is shipped by Cloudera, MapR, Oracle, and Amazon. impala是hadoop上的开源分析性数据库:C++和java语言开发: Do BI-style Queries on Hadoop Im…