『PyTorch』第十弹_循环神经网络】的更多相关文章

RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础RNN网络回归问题 『TensotFlow』深层循环神经网络 『TensotFlow』LSTM古诗生成任务总结 对于torch中的RNN相关类,有原始和原始Cell之分,其中RNN和RNNCell层的区别在于前者一次能够处理整个序列,而后者一次只处理序列中一个时间点的数据,前者封装更完备更易于使用,后者更具灵…
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet,self).__init__() self.conv1 = nn.Conv2d(3, 6, 5)…
全流程地址 一.辅助API介绍 mxnet.image.ImageDetIter 图像检测迭代器, from mxnet import image from mxnet import nd data_shape = 256 batch_size = 32 rgb_mean = nd.array([123, 117, 104]) def get_iterators(data_shape, batch_size): """256, 32""" cla…
Tensor存储结构如下, 如图所示,实际上很可能多个信息区对应于同一个存储区,也就是上一节我们说到的,初始化或者普通索引时经常会有这种情况. 一.几种共享内存的情况 view a = t.arange(0,6) print(a.storage()) b = a.view(2,3) print(b.storage()) print(id(a.storage())==id(b.storage())) a[1] = 10 print(b) 上面代码,我们通过.storage()可以查询到Tensor…
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创建的节点称为叶子节点,叶子节点的grad_fn为None.叶子节点中需要求导的variable,具有AccumulateGrad标识,因其梯度是累加的. variable默认是不需要求导的,即requires_grad属性默认为False,如果某一个节点requires_grad被设置为True,那…
一.基本队列: 队列有两个基本操作,对应在tf中就是enqueue&dequeue tf.FIFOQueue(2,'int32') import tensorflow as tf '''FIFO队列操作''' # 创建队列 # 队列有两个int32的元素 q = tf.FIFOQueue(2,'int32') # 初始化队列 init= q.enqueue_many(([0,10],)) # 出队 x = q.dequeue() y = x + 1 # 入队 q_inc = q.enqueue(…
总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及backward()的一些API.同时包含着和张量相关的梯度 nn.Module - 神经网络模块,便捷的数据封装,能够将运算移往GPU,还包括一些输入输出的东西 nn.Parameter - 一种变量(Variable),当将任何值赋予Module时自动注册为一个参数 autograd.Functi…
一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性映射 from torch.autograd import Function class MultiplyAdd(Function): # <----- 类需要继承Function类 @staticmethod # <-----forward和backward都是静态方法 def forward(…
查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和hook方法都是很强大的工具,更详细的用法参考官方api文档,这里举例说明基础的使用.推荐使用hook方法,但是在实际使用中应尽量避免修改grad的值. 求z对y的导数 x = V(t.ones(3)) w = V(t.rand(3),requires_grad=True) y = w.mul(x) z…
一.简单数学操作 1.逐元素操作 t.clamp(a,min=2,max=4)近似于tf.clip_by_value(A, min, max),修剪值域. a = t.arange(0,6).view(2,3) print("a:",a) print("t.cos(a):",t.cos(a)) print("a % 3:",a % 3) # t.fmod(a, 3) print("a ** 2:",a ** 2) # t.po…