粗糙集理论是一种研究不精确,不确定性知识的数学工具. 粗糙集理论的知识表达方式一般采用信息表或称为信息系统的形式,它可以表现为四元有序组K=(U,A,V,P).其中U为对象的全体,即论域:A是属性全体:V是属性的值域:P为一个信息函数,反映了对象x在K中的完全信息. 粗糙集的思想为: 一种类别对应一个概念(类别可以用集合表示,概念可以用规则描述),知识由概念组成:如果某个知识含有不精确概念,则该知识不精确.粗糙集对不精确概念的描述方法是通过下近似和上近似概念来描述. 上近似包含了所有使用知识R可…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
1. Learning to Rank 1.1 什么是排序算法 为什么google搜索 ”idiot“ 后,会出现特朗普的照片? “我们已经爬取和存储了数十亿的网页拷贝在我们相应的索引位置.因此,你输入一个关键字,我们将关键词与网页进行匹配,并根据200多个因子对其进行排名,这些因子包括相关性.新鲜度.流行度.PageRank值.查询和文档匹配的单词个数.网页URL链接地址长度以及其他人对排序结果的满意度等.在此基础上,在任何给定的时间,我们尝试为该查询排序并找到最佳结果.” —— Google…
粗糙集理论(Rough Set Theory) 一种数据分析处理理论. <粗糙集—关于数据推理的理论>. 数据挖掘(Data Mining)和知识发现(KDD). 集合近似定义的基本思想及其应用和粗糙集合环境下的机器学习基础研究. 在粗糙集中使用信息表(information table) 描述论域中的数据集合.信息表的形式和大家所熟悉的关系数据库中的关系数据模型很相似,是一张二维表格. 数据库(数据挖掘).粗糙集.粗糙集合论.集合A(列表).对象.属性(条件属性,决策属性).论域.知识.知识…
1. 粗糙集属性约简算法仅仅选出属性重要度大的条件加入约减中,没有考虑约简中条件属性相互之间的冗余性,得到的约简往往不是都必要的,即含有冗余属性. 2. mRMR算法则除了考虑特征与类别之间的相关性,还考虑特征与特征之间的冗余度,约束特征与类别最大相关,特征与特征最小冗余. 3. 根据mRMR算法,将粗糙集约简算法改进为最小相关最大依赖度属性约简的算法如下…
介绍 RoughSets算法是一种比较新颖的算法,粗糙集理论对于数据的挖掘方面提供了一个新的概念和研究方法.本篇文章我不会去介绍令人厌烦的学术概念,就是简单的聊聊RoughSets算法的作用,直观上做一个了解.此算法的应用场景是,面对一个庞大的数据库系统,如何从里面分析出有效的信息,如果一database中有几十个字段,有我们好受的了,但是一般的在某些情况下有些信息在某些情况下是无用的或者说是无效的,这时候我们假设在不影响最终决策分类结果的情况下,对此属性进行约简.这就是RoughSets所干的…
新手入门完整教程进阶指南 API中文手册精华文章TF社区 INTRODUCTION 1. 新手入门 1.1. 介绍 1.2. 下载及安装 1.3. 基本用法 2. 完整教程 2.1. 总览 2.2. MNIST 数据下载 2.3. MNIST 入门 2.4. MNIST 进阶 2.5. TENSORFLOW 运作方式入门 2.6. 卷积神经网络 2.7. 字词的向量表示 2.8. 递归神经网络 2.9. 曼德布洛特(MANDELBROT)集合 2.10. 偏微分方程 3. 进阶指南 3.1. 总…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at Microsoft Research New England Vittorio Ferrari at Univ.of Edinburgh Kristen Grauman at UT Austin Devi Parikh at  TTI-Chicago (Marr Prize at ICCV2011…