Spark SQL编程指南(Python)【转】】的更多相关文章

前言   Spark SQL允许我们在Spark环境中使用SQL或者Hive SQL执行关系型查询.它的核心是一个特殊类型的Spark RDD:SchemaRDD.   SchemaRDD类似于传统关系型数据库的一张表,由两部分组成:   Rows:数据行对象 Schema:数据行模式:列名.列数据类型.列可否为空等   Schema可以通过四种方式被创建:   (1)Existing RDD (2)Parquet File (3)JSON Dataset (4)By running Hive…
转自:http://www.cnblogs.com/yurunmiao/p/4685310.html 前言   Spark SQL允许我们在Spark环境中使用SQL或者Hive SQL执行关系型查询.它的核心是一个特殊类型的Spark RDD:SchemaRDD.   SchemaRDD类似于传统关系型数据库的一张表,由两部分组成:   Rows:数据行对象 Schema:数据行模式:列名.列数据类型.列可否为空等   Schema可以通过四种方式被创建:   (1)Existing RDD…
首先看看从官网学习后总结的一个思维导图 概述(Overview) Spark SQL是Spark的一个模块,用于结构化数据处理.它提供了一个编程的抽象被称为DataFrames,也可以作为分布式SQL查询引擎. 开始Spark SQL Spark SQL中所有功能的入口点是SQLContext类,或者它子类中的一个.为了创建一个基本的SQLContext,你所需要的是一个SparkContext. 除了基本的SQLContext,你还可以创建一个HiveContext,它提供了基本的SQLCon…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
Spark Streaming 编程指南 Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (DStreams) Input DStreams and Receivers Transformations on DStreams Output Operations on DStreams DataFrame and SQL Operations MLli…
Spark Streaming 编程指南 概述 一个入门示例 基础概念 依赖 初始化 StreamingContext Discretized Streams (DStreams)(离散化流) Input DStreams 和 Receivers(接收器) DStreams 上的 Transformations(转换) DStreams 上的输出操作 DataFrame 和 SQL 操作 MLlib 操作 缓存 / 持久性 Checkpointing Accumulators, Broadcas…
问题导读1.GraphX提供了几种方式从RDD或者磁盘上的顶点和边集合构造图?2.PageRank算法在图中发挥什么作用?3.三角形计数算法的作用是什么?Spark中文手册-编程指南Spark之一个快速的例子Spark之基本概念Spark之基本概念Spark之基本概念(2)Spark之基本概念(3)Spark-sql由入门到精通Spark-sql由入门到精通续spark GraphX编程指南(1)Pregel API 图本身是递归数据结构,顶点的属性依赖于它们邻居的属性,这些邻居的属性又依赖于自…
今天做实验[Spark SQL 编程初级实践],虽然网上有答案,但都是用scala语言写的,于是我用java语言重写实现一下. 1 .Spark SQL 基本操作将下列 JSON 格式数据复制到 Linux 系统中,并保存命名为 employee.json.{ "id":1 , "name":" Ella" , "age":36 }{ "id":2, "name":"Bob&q…
不多说,直接上干货! 不带Hive支持 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.</artifactId> <version></version> </dependency> 带Hive支持(推荐使用) <dependency> <groupId>org.apache.spark&l…
实验 5  Spark SQL 编程初级实践    参考厦门大学林子雨 1. Spark SQL 基本操作 将下列 json 数据复制到你的 ubuntu 系统/usr/local/spark 下,并保存命名为 employee.json. { "id":1 ,"name":" Ella","age":36 } { "id":2,"name":"Bob","…