Mole and Abandoned Mine n点m条边的无向图,删除第i条边花费c[i],问1到n只有一条路径时所需要的最小花费? \(2\le n\le 15\) . 我又A掉了一道zzs的题啦! 首先,我们观察1到n只有一条路径时,图是怎么样的.显然是一条1到n的链,链上的每个点都挂了很多子联通块,但这些子连通块互不连通.(exp:对于某些图论题,观察要求的东西,看看能否把它的性质描述出来.放到这道题里就是这条路径的性质.) 然后,用\(f[S][x]\)表示现在选入的点集是S,链的最后…
problem ATC-arc078F 题意概要:给定一个 \(n\) 点 \(m\) 边简单无向图(无自环无重边),边有费用,现切去若干条边,使得从 \(1\) 到 \(n\) 有且仅有一条简单路径,求最小化花费. \(n\le 15, n-1\le m\le \binom n2\) Solution 看到 \(n\leq 15\) 大概就能猜到复杂度是 \(O(3^n)\) 左右的,然后直接思考用斯坦纳树咋解,无果. 开始思考最终局面的情况,一定是有一条 \(1\) 到 \(n\) 的路径,…
洛谷题目页面传送门 & AtCoder题目页面传送门 给定一个无向连通带权图\(G=(V,E),|V|=n,|E|=m\)(节点从\(0\)开始编号),要删掉一些边使得节点\(0\)到\(n-1\)有且只有\(1\)条简单路径,求最小的删掉的边的权值和. \(n\in[2,15],m\in\left[n-1,\dfrac{n(n-1)}2\right]\),\(G\)中没有重边或自环. 这个问题显然可以转化为:求最大的删过边之后的图的边权和,再用原图的边权和减去它. 考率删过边之后的图\(G'(…
简要题解如下: 记 \(1\) 到 \(n\) 的路径为关键路径. 注意到关键路径只有一条是解题的关键,可以思考这张图长什么样子. 不难发现关键路径上所有边均为桥,因此大致上是关键路径上每个点下面挂了很多个连通块. 基于这张图的形态涉及一个 \(dp\),令 \(f_{i, S}\) 表示当前只考虑 \(S\) 这个集合,当前在关键路径上走到的点为 \(i\) 留下的最大边权. 转移有两种,一种是直接考虑在关键路径上往后扩展一个点 \(j\),令一种方式是考虑在 \(i\) 下面挂上一个连通块…
题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据的节点集合不可能相同,因为在这两种走法中,节点i必有两个子树中的棋子数量不同.所以,题目中的"被占据的集合唯一"等价于"每个棋子走向的节点唯一". 根据题意,一个初始状态合法当且仅当这个状态可以进行任意次操作,且进行k步操作后,接下来一步操作唯一(不管这样走之后,是否还…
传送门 好神的状压dp啊 首先考虑一个性质,删掉之后的图一定是个联通图 并且每个点最多只与保留下来的那条路径上的一个点有边相连 然后设状态:\(f[s][t]\)代表当前联通块的点的状态为\(s\)和路径结尾的点\(t\) 然后考虑转移,要么拓展一个点作为路径,要么挂一个联通块到当前路径结尾的点上 代码: #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #in…
注意到最终图的样子可以看作一条从1到$n$的路径,以及删去这条路径上的边后,路径上的每一个点所对应的一个连通块 考虑dp,令$f_{S,i}$表示当前1到$n$路径上的最后一个点以及之前点(包括$i$)所对应连通块的并,转移考虑枚举下一个点以及其对应的连通块,即$f_{S\cup T,j}=\min(f_{S,i}+sum(S,T)-len(i,j))$ (其中$len(i,j)$表示$(i,j)$这条边的长度,$sum(S,T)=\sum_{x\in S,y\in T,(x,y)\in E}l…
题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x,b_y)\),可以先把\(a_x\)和\(a_y\)提升到\(min(b_x,b_y)\)(以后的a数组都指做过这步操作的).接下来如果\(max(a_x,a_y)\geq max(b_x,b_y)\),那么这一对已经符合要求,可以直接不管.接下来只考虑需要管的. 发现每一对需要管的(x,y),两…
点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取模,然后变成a%b.注意到a%b是\(\leq \frac a2\)的,并且a被操作之后会变成整个数据最小的数,作为下一轮的b.所以把原数组排序后,最小值的位置是不断往左移的,每次移动1个位置,直接模拟即可. 时间复杂度\(O(nlog a_i)\). 点击查看代码 #include <bits/s…
首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\).既然如此,考虑一棵差分的树,规定每一个节点被选择的次数为 \(x\),表示节点实际上被选择的次数是父亲被选择的次数 \(+x\).显然,这个 \(x\) 是小于等于 \(D\) 的.分析这样我们发现,选择了一个节点实际上对应子树内的所有节点的选择次数均增加,所以我们重新定义选择一个节点的价值为子树内(含自身)节点的个数,而代价则是子树内所有代价的总和…