Tensorflow细节-P194-组合训练数据】的更多相关文章

import tensorflow as tf files = tf.train.match_filenames_once("data.tfrecords-*") filename = tf.train.string_input_producer(files, shuffle=False, num_epochs=3) # 创建输入队列 reader = tf.TFRecordReader() _, serialized_example = reader.read(filename) f…
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 通过TensorFlow提供的tf.train.batch和tf.train.shuffle_batch函数来将单个的样例组织成batch的形式输出. #!/usr/bin/env python # -*- coding: UTF-8 -*- # coding=utf-8 """ @author: Li Tian @contact: 694317828@qq.com @software: p…
1. 预加载数据 Preloaded data # coding: utf-8 import tensorflow as tf # 设计Graph x1 = tf.constant([2, 3, 4]) x2 = tf.constant([4, 0, 1]) y = tf.add(x1, x2) with tf.Session() as sess: print sess.run(y) # output: # [6 3 5] 预加载数据方式是将训练数据直接内嵌到tf的图中,需要提前将数据加载到内存…
由于6.5中提出的TFRecord非常复杂,可扩展性差,所以本节换一种方式 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np # 定义函数转化变量类型. def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))…
本节包含: 用纯文本文件准备训练数据 加载文件中的训练数据 一.用纯文本文件准备训练数据 1.数据的数字化 比如,“是” —— “1”,“否” —— “0” “优”,“中”,“差” —— 1 2 3  或者 3 2 1 2.训练数据的格式 在文本文件中,一般每行存放一条数据,一条数据中可以有多个数据项(有时称为“字段”),数据项中间一般使用英文逗号”,“ 进行分割 90,80,70,0 98,95,87,1 99,99,99,1 80,85,90,0 这就是三好学生评选结果问题的一组数据,每行代…
本文目的 在介绍estimator分布式的时候,官方文档由于版本更新导致与接口不一致.具体是:在estimator分布式当中,使用dataset作为数据输入,在1.12版本中,数据训练只是dataset的数据,就是所有设备加起来,跑一遍数据. 而在2.0版本中,训练数据是dataset的数据乘以分 布式的设备数.也就是说,在每个设备当中都会完整地跑一遍dataset的所有数据. 1.12版本读取 1. 在主线程当中创建图 下面这段代码中,在client中调用了input function,得到迭…
本节是对上节的补充 import tempfile import tensorflow as tf # 输入数据使用本章第一节(1. TFRecord样例程序.ipynb)生成的训练和测试数据. train_files = tf.train.match_filenames_once("output.tfrecords") test_files = tf.train.match_filenames_once("output_test.tfrecords") def p…
视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自己特定任务的网络进行调优.目前,ILSVRC比赛(针对1000类的分类问题)所使用数据的训练集126万张图像,验证集5万张,测试集10万张(标注未公布),大家一般使用这个比赛的前几名的网络来搭建自己特定任务的神经网络. 本篇博文主要简单讲述怎么使用TensorFlow调用预训练好的VGG网络,其他的…
[开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFlow进行深度学习训练时,很多时候都是与Numpy数据打招呼,例如我们csv或者照片数据等.但是我们都知道,TensorFlow训练时都是使用Tensor来存储变量的,并且网络输出的结果也是Tensor. 一般情况下我们不会感受到Numpy与Tensor之间的区别,因为TensorFlow网络在输入Nump…
https://blog.csdn.net/lujiandong1/article/details/53991373 方式一:不显示设置读取N个epoch的数据,而是使用循环,每次从训练的文件中随机读取一个batch_size的数据,直至最后读取的数据量达到N个epoch.说明,这个方式来实现epoch的输入是不合理.不是说每个样本都会被读取到的. 对于这个的解释,从数学上解释,比如说有放回的抽样,每次抽取一个样本,抽取N次,总样本数为N个.那么,这样抽取过一轮之后,该样本也是会有1/e的概率没…