来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter卷积后 得到了 17x17x20的数据 不填充且步长为2的情况下经过5x5的40个filter卷积后 得到了 7x7x40的最终结果 将7x7x40的卷积层全部展开作为输入特征,建立一个输入层单元数为1960的神经网络即可 卷积神经网络常见的结构: 1.Conv卷积层如上图所见 2.Pool池化层…
以上是一个识别手写数字的示例 在这个示例中使用了两个卷积-池化层,三个全连接层和最后的softmax输出层 一般而言,CNN的构成就是由数个卷积层紧跟池化层再加上数个全连接层和输出层来构建网络. 在上述网络中可以看到一个有关参数的现象如下图: 随着卷积网络层数的增加,可以看到有关图片数据的height和weight都在减小,而信道channel在增加. 伴随着这种操作,激活层的大小也在减小.但是卷积层需要的参数量在增多(f x f + 1) x c,f为filter的大小,c为channel的数…
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小.  b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是…
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最…
CNN学习笔记:池化层 池化 池化(Pooling)是卷积神经网络中另一个重要的概念,它实际上是一种形式的降采样.有多种不同形式的非线性池化函数,而其中“最大池化(Max pooling)”是最为常见的.它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值.直觉上,这种机制能够有效地原因在于,在发现一个特征之后,它的精确位置远不及它和其他特征的相对位置的关系重要.池化层会不断地减小数据的空间大小,因此参数的数量和计算量也会下降,这在一定程度上也控制了过拟合.通常来说,CNN的卷积层之间都…
原文地址:https://blog.csdn.net/CVSvsvsvsvs/article/details/90477062 池化层作用机理我们以最简单的最常用的max pooling最大池化层为例,对池化层作用机理进行探究.其他池化层的作用机理也大致适用这一机理,在这里就不加入讨论. 图片和以下部分内容来自 CS231n 从上面左图可以看到,使用了pool操作其实就是降低图片的空间尺寸.右图使用一个 2 × 2的 池化核(filter),以2为步长(stride),对图片进行max pool…
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflownews.com #!/usr/bin/python # -*- coding: UTF-8 -*- import matplotlib.pyplot as plt import tensorflow as tf from PIL import Image import numpy img = Ima…
网上对np.pad的解释很玄乎,举的例子也不够直观,看了更晕了,对于CNN的填充请参考下面就够用了: np.pad的参数依次是目标数组,多增加的维数可以理解为一张图的前后左右增加几圈,设置为'constant'之后为连续填充相同的值,默认为(0, 0),可以设置为constant_values = (x, y)…
和单层图像的卷积类似,只需要对每一个filter构成的三层立方体上的每一个数字与原图像对应位置的数字相乘相加求和即可. 在这个时候可以分别设置filter的R.G.B三层,可以同时检测纵向或横向边缘,也可以只检测某一通道的,只需要对其他通道的filter置为0即可. 那么如果要使用filter同时对纵向.横向或者其他角度的边缘进行检测该怎么办呢? Multiple filter: 对于同时采用多个filter来检测不同特征的时候,只需要将多个filter的结果堆叠起来输出即可,如上图所示. 神经…
感谢吴恩达老师的公开课,以下图片均来自于吴恩达老师的公开课课件 为什么要进行卷积操作? 我们通过前几天的实验已经做了64*64大小的猫图片的识别. 在普通的神经网络上我们在输入层上输入的数据X的维数为(64*64*3, m) 假设第二层的节点数为1000,在全连接网络下,则W的维数为(1000, 64*64*3). 这看起来是可以操作的,但是实际情况下的图片是更高清的,比如现在的手机已经动辄2400万像素. 在这种情况下让内存来处理很多W权重矩阵是不现实的,因此卷积神经网络就成为了计算机视觉领域…