时序预测一直是比较重要的研究问题,在统计学中我们有各种的模型来解决时间序列问题,但是最近几年比较火的深度学习中也有能解决时序预测问题的方法,另外在深度学习领域中时序预测算法可以解决自然语言问题等. 在网上找到了    tensorflow 中   RNN    和    LSTM   算法预测  sin  曲线的代码,效果不错. LSTM: #encoding:UTF-8 import random import numpy as np import tensorflow as tf from…
基于循环神经网络(RNN)的智能聊天机器人系统 本设计研究智能聊天机器人技术,基于循环神经网络构建了一套智能聊天机器人系统,系统将由以下几个部分构成:制作问答聊天数据集.RNN神经网络搭建.seq2seq模型训练.智能聊天.经过实验,确定该系统可对本人的聊天话语进行快速并准确的回应,且回复可以模仿朋友的语气风格. 关键词: RNN神经网络: seq2seq模型: 聊天机器人:TensorFlow: 一.设计目标 1.掌握聊天机器人系统原理: 2.掌握循环神经网络(RNN)原理: 3.掌握循环神经…
  在上一篇文章中,介绍了 卷积神经网络(CNN)的算法原理,CNN在图像识别中有着强大.广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如: 语音识别,要按顺序处理每一帧的声音信息,有些结果需要根据上下文进行识别: 自然语言处理,要依次读取各个单词,识别某段文字的语义 这些场景都有一个特点,就是都与时间序列有关,且输入的序列数据长度是不固定的. 而经典的人工神经网络.深度神经网络(DNN),甚至卷积神经网络(CNN),一是输入的数据维度相同,另外是各个输入之间是独立的,每层神经元的信号…
参考1 参考2 参考3 1. 为什么选择序列模型 序列模型能够应用在许多领域,例如: 语音识别 音乐发生器 情感分类 DNA序列分析 机器翻译 视频动作识别 命名实体识别 这些序列模型都可以称作使用标签数据(X,Y)作为训练集的监督式学习,输入x和输出y不一定都是序列模型.如果都是序列模型的话,模型长度不一定完全一致. 2. Notation(标记) 下面以 命名实体识别 为例,介绍序列模型的命名规则.示例语句为: Harry Potter and Hermione Granger invent…
前言 多方寻找视频于博客.学习笔记,依然不能完全熟悉RNN,因此决定还是回到书本(<神经网络与深度学习>第六章),一点点把啃下来,因为这一章对于整个NLP学习十分重要,我想打好基础. 当然,依然感谢这个视频对我理解RNN的帮助,链接在此: https://www.bilibili.com/video/BV1z5411f7Bm?spm_id_from=333.337.search-card.all.click 循环神经网络 循环神经网络(Recurrent Neural Network,RNN)…
RNN RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息.由于其特殊的网络模型结构解决了信息保存的问题.所以RNN对处理时间序列和语言文本序列问题有独特的优势.递归神经网络都具有一连串重复神经网络模块的形式.在标准的RNNs中,这种重复模块有一种非常简单的结构.     那么S(t+1) = tanh( U*X(t+1) + W*S(t)).tanh激活函数图像如下:  激活函数tanh把状态S值映射到-1和1之间. RN…
http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/ Applied Deep Learning - Part 1: Artificial Neural Ne…
循环神经网络(Recurrent Neural Network,RNN)是一类具有短期记忆能力的神经网络,适合用于处理视频.语音.文本等与时序相关的问题.在循环神经网络中,神经元不但可以接收其他神经元的信息,还可以接收自身的信息,形成具有环路的网络结构. 循环神经网络的参数学习可以通过随时间反向传播算法来学习,即按照时间的逆序把误差一步步往前传递.而当输入序列比较长时,会产生梯度爆炸或梯度消失问题,这也叫做长期依赖问题.为了解决这个问题,门控机制被引入来改进循环神经网络,也就是长短期记忆网络(L…
1.导入依赖包,初始化一些常量 import collections import numpy as np import tensorflow as tf TRAIN_DATA = "./data/ptb.train.txt" # 训练数据路径 TEST_DATA = "./data/ptb.test.txt" # 测试数据路径 EVAL_DATA = "./data/ptb.valid.txt" # 验证数据路径 HIDDEN_SIZE = 3…
Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义.我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考.我们的思想拥有持久性. 传统的神经网络并不能做到这点,看起来也像是一种巨大的弊端.例如,假设你希望对电影中的每个时间点的时间类型进行分类.传统的神经网络应该很难来处理这个问题--使用电影中先前的事件推断后续的事件. RNN 解决了这个问题.…
循环神经网络(RNN) 人们的每次思考并不都是从零开始的.比如说你在阅读这篇文章时,你基于对前面的文字的理解来理解你目前阅读到的文字,而不是每读到一个文字时,都抛弃掉前面的思考,从头开始.你的记忆是有持久性的. 传统的神经网络并不能如此,这似乎是一个主要的缺点.例如,假设你在看一场电影,你想对电影里的每一个场景进行分类.传统的神经网络不能够基于前面的已分类场景来推断接下来的场景分类. 循环神经网络(Recurrent Neural Networks)解决了这个问题.这种神经网络带有环,可以将信息…
1.    场景与应用 在循环神经网络可以用于文本生成.机器翻译还有看图描述等,在这些场景中很多都出现了RNN的身影. 2.    RNN的作用 传统的神经网络DNN或者CNN网络他们的输入和输出都是独立的.对于这些模型输入的数据跟输出的数据大多是关联不太紧密的场景,但是有些场景输入的数据对后面输入的数据是有关系的,或者说后面的数据跟前面的数据是有关联的.例如,对于文本类的数据,当输入某句话的时候,刚开始输入第一个字的时候,再输入这句话的第二个字时候,其实第二个字要输入什么字其实是跟第一个字是有…
循环神经网络(Recurrent Neural Network,简称RNN),通常用于处理序列数据.正如卷积神经网络通常用于处理网格数据(例如图像)一样. 1.展开计算图 输入.输出.记忆 权值 2.双向RNN 3.长期依赖 4.门控RNN(gated RNN) 长短期记忆(long short-term memory) 渗漏单元(leaky unit)…
一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整个数据集的大小为(42000,784),加上标签值的一列. 二.模型选择 通过简单的数据观察,发现这些数据都是初始的像素数据,还没经过标准化.所以对其做标准化处理后,我们就可以进入到模型选择的步骤了. 整个数据集dataset的数据量不算小,shape为(42000,784),为了节省时间,我们可以…
第一步仍然是导入库和数据集. ''' To classify images using a reccurent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. ''' 这里我们设定了各种参数,此时的n_ste…
在很多博客和知乎中我看到了许多对于pytorch框架中RNN接口的一些解析,但都较为浅显甚至出现一些不准确的理解,在这里我想阐述下我对于pytorch中RNN接口的参数的理解. 我们经常看到的RNN网络是如图下所示: RNN的 1. timestep训练过程 这个左边图中间循环的箭头难以理解,所以将其按照时间轴展开成多个单元. 但是!!!! 网络只有一个,网络只有一个,网络只有一个, 并不是想右边那样画的.右边的图只不过是不同时刻的输入.因为每个时刻RNN会产生两个输出,一个output和一个s…
循环神经⽹络是为更好地处理时序信息而设计的.它引⼊状态变量来存储过去的信息,并⽤其与当前的输⼊共同决定当前的输出.循环神经⽹络常⽤于处理序列数据,如⼀段⽂字或声⾳.购物或观影的顺序,甚⾄是图像中的⼀⾏或⼀列像素.因此,循环神经⽹络有着极为⼴泛的实际应⽤,如语⾔模型.⽂本分类.机器翻译.语⾳识别.图像分析.⼿写识别和推荐系统. 1.引入 对于2句话,都有Taipei这个词,但是一个是目的地,一个是出发地 如果神经网络有记忆力,能够根据上下文对同样的input词汇产生不同的输出,我们就能解决这个问题…
#加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #设置训练的超参数,学习率 训练迭代最大次数,输入数据的个数 learning_rate= 0…
tensorflow 官网信息:https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/BasicLSTMCell tensorflow 版本:1.10 如有错误还望指正,一起探讨: 当前层各个参数含义: Tensorflow 中RNN单个时刻计算流程: Tensorflow 中 lstm 单个时刻计算流程: 注:上面计算[H,X] * W后和B维度不同, 如何相加,解释如下: tensorflow代码中,用的这个 nn_ops.bia…
1. 导读 本节内容介绍普通RNN的弊端,从而引入各种变体RNN,主要讲述GRU与LSTM的工作原理. 事先声明,本人采用ng在课堂上所使用的符号系统,与某些学术文献上的命名有所不同,不过核心思想都是相同的. 2. 普通RNN的弊端 在NLP中,句子内部以及句子之间可能存在很长的依赖关系(long-term dependecies),最前边的单词对句子后面的单词产生影响.但是普通RNN不擅长捕获这种长期依赖关系.因为RNN相当于很深的权重共享的神经网络,因此在反向传播的过程中存在很严重的梯度消失…
RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一时刻隐藏层的状态向量). demo:单层全连接网络作为循环体的RNN 输入层维度:x 隐藏层维度:h 每个循环体的输入大小为:x+h 每个循环体的输出大小为:h 循环体的输出有两个用途: 下一时刻循环体的输入的一部分 经过另一个全连接神经网络,得到当前时刻的输出 序列长度 理论上RNN支持任意序列长…
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 前言 RNN知识结构 简单循环神经网络 RNN的基本结构 RNN的运算过程和参数更新 一.前言 前馈神经网络不考虑数据之间的关联性,网络的输出只和当前时刻网络的输入相关.然而在解决很多实际问题的时候我们发现,现实问题中存在着很多序列型的数据,例如文本.语音以及视频等.这些序列型的数据往往都是具有时序上的关联性的,既某一时刻网络的输出除了与当前时刻的输入相关之外,还与之前某…
摘要:本篇文章将分享循环神经网络LSTM RNN如何实现回归预测. 本文分享自华为云社区<[Python人工智能] 十四.循环神经网络LSTM RNN回归案例之sin曲线预测 丨[百变AI秀]>,作者:eastmount. 一.RNN和LSTM回顾 1.RNN (1) RNN原理 循环神经网络英文是Recurrent Neural Networks,简称RNN.假设有一组数据data0.data1.data2.data3,使用同一个神经网络预测它们,得到对应的结果.如果数据之间是有关系的,比如…
RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统.文本分类等. 但由于梯度爆炸或梯度消失,RNN存在长期依赖问题,难以建立长距离的依赖关系,于是引入了门控机制来控制信息的累积速度,包括有选择地加入新信息,并有选择地遗忘之前积累的信息.比较经典的基于门控的RNN有LSTM(长短期记忆网络)和GRU(门控循环单元网络). 有关RNN,LSTM和GRU…
为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定,而不同序列的输入.输出可能有不同的长度,选择最大长度并对短序列进行填充(pad)不是一种很好的方式:2)全连接神经网络同一层的节点之间是无连接的,当需要用到序列之前时刻的信息时,全连接神经网络无法办到,一个序列的不同位置之间无法共享特征.而循环神经网络(Recurrent Neural Networ…
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一种表现形式.在一个数据集中,模式有很多不同的表现形式,不管是在传统的机器学习训练的过程,还是是深度学习的训练过程,本质上都是在进行模式提取. 而从信息论的角度来看,模式提取也可以理解为一种信息压缩过程,通过将信息从一种形式压缩为另一种形式.压缩的过程不可避免会造成信息丢失. 笔者这里列举几种典型的体…
一.循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据.循环神经网络刻画了一个序列当前的输出与之前信息的关系.从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出. 下图展示了一个典型的循环神经网络. 循环神经网络的一个重要的概念就是时刻.上图中循环神经网络的主体结构A的输入除了来自输入层的Xt,还有一个自身当前时刻的状态St. 在每一个时刻,A会读取t时刻的输入Xt,并且得到一个输出Ht.同时还会得到一个当前时刻的状态St,传递给下一时刻t+1. 因此,循环…
循环神经网络(recurrent neural network,RNN)-------------------------重要结构(长短时记忆网络( long short-term memory,LSTM)) 主要介绍循环神经网络在自然语言处理(natural language processing,NLP) 传统的机器学习算法非常依赖人工提取的特征,使得基于传统机器学习的图像识别,语音识别以及自然语言处理等问题存在特征提取的瓶颈.而基于全连接神经网络的方法也存在参数太多,无法利用数据中时间序列…
随着科学技术的发展以及硬件计算能力的大幅提升,人工智能已经从几十年的幕后工作一下子跃入人们眼帘.人工智能的背后源自于大数据.高性能的硬件与优秀的算法的支持.2016年,深度学习已成为Google搜索的热词,随着最近一两年的围棋人机大战中,阿法狗完胜世界冠军后,人们感觉到再也无法抵挡住AI的车轮的快速驶来.在2017年这一年中,AI已经突破天际,相关产品也出现在人们的生活中,比如智能机器人.无人驾驶以及语音搜索等.最近,世界智能大会在天津举办成功,大会上许多业内行家及企业家发表自己对未来的看法,可…
循环神经网络(Recurrent Neural NetWork,RNN)是一种将节点定向连接成环的人工神经网络,其内部状态可以展示动态时序行为. 循环神经网络的主要用途是处理和预测序列数据.循环神经网络最初就是为了刻画一个序列当前的输出与之前信息的关系.从网络结构上来看,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出.也就是说,循环神经网络的隐藏层之间的节点是有连接的,隐藏层的输入不仅包含输入层的输出,还包括上一时刻隐藏层的输出. 如图为典型的RNN结构示意图.RNN主体结构的…