Roberts算子】的更多相关文章

https://blog.csdn.net/likezhaobin/article/details/6892176 https://zhuanlan.zhihu.com/p/35032299 Roberts算子是一种斜向偏差分的梯度计算方法,梯度的大小代表边缘的强度,梯度的方向与边缘的走向垂直. Roberts算子定位精度高,在水平和垂直方向的效果好,但对噪声敏感.…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性.图像感兴趣 ROI 区域及通道处理」 「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」 「Python 图像处理 OpenCV (5):图像的几何变换」 「Python 图像处理 OpenCV (6):图像的阈值处理」 「Py…
http://blog.csdn.net/swj110119/article/details/51777422 一.学习心得: 学习图像处理的过程中,刚开始遇到图像梯度和一些算子的概念,这两者到底是什么关系,又有什么不同,一直困扰着我.后来在看到图像分割这一模块后才恍然大悟,其实图像的梯度可以用一阶导数和二阶偏导数来求解.但是图像以矩阵的形式存储的,不能像数学理论中对直线或者曲线求导一样,对一幅图像的求导相当于对一个平面.曲面求导.对图像的操作,我们采用模板对原图像进行卷积运算,从而达到我们想要…
canny 最好.但是容易把噪点误判为边界.sobel prewitt log 效果差不多.prewitt比sobel 去噪效果好.roberts马马虎虎.适合什么图片那得看图片的噪点情况,一般canny 算子是最好的.边缘检测算子一阶的有Roberts Cross算子,Prewitt算子,Sobel算子,Canny算子, Krisch算子,罗盘算子:而二阶的还有Marr-Hildreth,在梯度方向的二阶导数过零点.Roberts算子一种利用局部差分算子寻找边缘的算子,分别为4领域的坐标,且是…
OpenCV图像处理篇之边缘检测算子 转载: http://xiahouzuoxin.github.io/notes/ 3种边缘检测算子 一阶导数的梯度算子 高斯拉普拉斯算子 Canny算子 OpenCV中相关源码 试试身手 3种边缘检测算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性,沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于二维的图像,梯度定义为一个向量, Gx对于x方向的梯度,Gy对应y方向的梯…
方法其实都差不多,就是用两个过滤器,分别处理两个分量 Sobel算子 先说Sobel算子 GX为水平过滤器,GY为垂直过滤器,垂直过滤器就是水平过滤器旋转90度.过滤器为3x3的矩阵,将与图像作平面卷积.如果不存在边则两个点颜色很接近,过滤器返回一个较小的值,否则就可判断出边缘的存在.当前点为中间点 具体计算如下: 求出图像的每一个像素的横向及纵向灰度值通过以下公式结合,来计算该点灰度的大小  本shdaer将G值作为颜色输出 Roberts算子 Roberts算子与之相似过滤器是2x2的矩阵过…
收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的图片 作为人,我们能够非常easy发现图中红圈有边界,边界处肯定是非常明显,变化陡峭的,在数学中,什么能够表示变化的快慢,自然就是导数,微分了. 想像有例如以下的一维图片. 红圈处变化最陡峭,再看导数图 红圈在最高值,也就是导数能够非常好表示边缘,由于变化非常剧烈 图像中的Sobel算子 是离散差分…
在讨论边缘算子之前,首先给出一些术语的定义: (1)边缘:灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像. (2)边缘点:图像中具有坐标[x,y],且处在强度显著变化的位置上的点. (3)边缘段:对应于边缘点坐标[x,y]及其方位 ,边缘的方位可能是梯度角. 二.Sobel算子的基本原理 Sobel算子是一阶导数的边缘检测算子,在算法实现过程中,通过3×3模板作为核与图像中的每个像素点做卷积和运算,然后选取合适的阈值以提取边缘. 一个特殊卷积所实现的…
基于MATLAB边缘检测算子的实现 作者:lee神 1.   概述 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点.图像属性中的显著变化通常反映了属性的重要事件和变化. 这些包括(i)深度上的不连续.(ii)表面方向不连续.(iii)物质属性变化和(iv)场景照明变化. 边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域. 一阶:  Roberts Cross算子,Prewitt算子,Sobel算子, Kirsch算子,罗盘算子: 二阶:…
本文学习利用python学习边缘检测的滤波器,首先读入的图片代码如下: import cv2 from pylab import * saber = cv2.imread("construction.jpg") saber = cv2.cvtColor(saber,cv2.COLOR_BGR2RGB) plt.imshow(saber) plt.axis("off") plt.show() 图片如下: 边缘检测是图像处理和计算机视觉的基本问题,边缘检测的目的是标识数…