tensorflow 13:多gpu 并行训练】的更多相关文章

多卡训练模式: 进行深度学习模型训练的时候,一般使用GPU来进行加速,当训练样本只有百万级别的时候,单卡GPU通常就能满足我们的需求,但是当训练样本量达到上千万,上亿级别之后,单卡训练耗时很长,这个时候通常需要采用多机多卡加速.深度学习多卡训练常见有两种方式,一种是数据并行化(data parallelism),另外一种是模型并行化(model parallelism). 深度模型训练方法: 深度学习模型的训练是一个迭代的过程,在每一轮迭代过程中,前向传播算法会根据当前参数的取值,计算出在一小部…
建议比对『MXNet』第七弹_多GPU并行程序设计 一.tensorflow GPU设置 GPU指定占用 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7. GPU模式禁用 import os os.environ…
前言 首先,如果你现在已经很熟悉tf.data+estimator了,可以把文章x掉了╮( ̄▽ ̄””)╭ 但是!如果现在还是在进行session.run(..)的话!尤其是苦恼于GPU显存都塞满了利用率却上不去的童鞋,这篇文章或许可以给你打开新世界的大门噢( ̄∇ ̄) 如果发现经过一系列改良后训练效率大大提高了,记得回来给小夕发小红包( ̄∇ ̄) 不过,这并不是一篇怒贴一堆代码,言(三)简(言)意(两)赅(语)就结束的CSDN文风的文章...所以伸手党们也可以X掉了╮( ̄▽ ̄””)╭ 缘起 很早很早…
tensorflow多GPU并行计算 TensorFlow可以利用GPU加速深度学习模型的训练过程,在这里介绍一下利用多个GPU或者机器时,TensorFlow是如何进行多GPU并行计算的. 首先,TensorFlow并行计算分为:模型并行,数据并行.模型并行是指根据不同模型设计不同的并行方式,模型不同计算节点放在不同GPU或者机器上进行计算.数据并行是比较通用简便的实现大规模并行方式,同时使用多个硬件资源计算不同batch数据梯度,汇总梯度进行全局参数更新. 在这里我们主要介绍数据并行的多GP…
TensorFlow并行,模型并行,数据并行.模型并行根据不同模型设计不同并行方式,模型不同计算节点放在不同硬伯上资源运算.数据并行,比较通用简便实现大规模并行方式,同时使用多个硬件资源计算不同batch数据梯度,汇总梯度全局参数更新. 数据并行,多块GPU同时训练多个batch数据,运行在每块GPU模型基于同一神经网络,网络结构一样,共享模型参数. 同步数据并行,所有GPU计算完batch数据梯度,统计将多个梯度合在一起,更新共享模型参数,类似使用较大batch.GPU型号.速度一致时,效率最…
持续监控GPU使用情况命令: $ watch -n 10 nvidia-smi1一.指定使用某个显卡如果机器中有多块GPU,tensorflow会默认吃掉所有能用的显存, 如果实验室多人公用一台服务器,希望指定使用特定某块GPU.可以在文件开头加入如下代码: import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"os.environ["CUDA_VISIBLE_DEVICES"] = &qu…
1. slim.arg_scope(函数, 传参) # 对于同类的函数操作,都传入相同的参数 from tensorflow.contrib import slim as slim import tensorflow as tf @slim.add_arg_scope # 进行修饰操作 def fun1(a=0, b=0): return a + b with slim.arg_scope([fun1], a=2): x = fun1(b=2) print(x)# 4 2. tf.name_sc…
​  前言  目前比较常见的并行训练是数据并行,这是基于模型能够在一个GPU上存储的前提,而当这个前提无法满足时,则需要将模型放在多个GPU上.现有的一些模型并行方案仍存在许多问题,本文提出了一种名为PatrickStar的异构训练系统.PatrickStar通过以细粒度方式管理模型数据来更有效地使用异构内存,从而克服了这些缺点. 本文附上了PatrickStar的使用示例.PatrickStar与模型定义无关,在PyTorch脚本上添加几行代码可以带来端到端的加速. 本文来自公众号CV技术指南…
前言 如何对现有的程序进行并行优化,是 GPU 并行编程技术最为关注的实际问题.本文将提供几种优化的思路,为程序并行优化指明道路方向. 优化前准备 首先,要明确优化的目标 - 是要将程序提速 2 倍?还是 10 倍?100倍?也许你会不假思索的说当然是提升越高越好. 但这里存在一个优化成本的问题.在同样的技术水平硬件水平下,提升 2 倍也许只要一个下午的工作量,但提高 10 倍可能要考虑到更多的东西,也许是一周的工作量.提高 100 倍, 1000 倍需要的成本,时间就更多了. 然后,需要将这个…
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺垫. 区别一:缓存管理方式的不同 GPU:缓存对程序员不透明,程序员可根据实际情况操纵大部分缓存 (也有一部分缓存是由硬件自行管理). CPU:缓存对程序员透明.应用程序员无法通过编程手段操纵缓存. 区别二:指令模型的不同 GPU:采用 SIMT - 单指令多线程模型,一条指令配备一组硬件,对应32…