python进程池:multiprocessing.pool】的更多相关文章

一.multiprocessing模块 multiprocessing模块提供了一个Process类来代表一个进程对象,multiprocessing模块像线程一样管理进程,这个是multiprocessing的核心,它与threading很相似,对多核CPU的利用率会比threading好的多 看一下Process类的构造方法: __init__(self, group=None, target=None, name=None, args=(), kwargs={}) 参数说明: group:…
进程池: 进程池的使用有四种方式:apply_async.apply.map_async.map.其中apply_async和map_async是异步的,也就是启动进程函数之后会继续执行后续的代码不用等待进程函数返回.apply_async和map_async方式提供了一写获取进程函数状态的函数:ready().successful().get(). PS:join()语句要放在close()语句后面.   实例代码如下: # -*- coding: utf-8 -*- import multi…
python中的进程池: 我们可以写出自己希望进程帮助我们完成的任务,然后把任务批量交给进程池 进程池帮助我们创建进程完成任务,不需要我们管理.进程池:利用multiprocessing 下的Pool能够创建进程池Pool(n) 传入一个n能够开一个能容纳n个进程任务的进程池. 如果不传入参数,或者传入负数 能开一个动态控制大小的进程池具体的使用方法如下:提醒大家要认真看注释 from multiprocessing import Pool import os,time,random #绑定给进…
#导入进程模块 import multiprocessing #创建进程池 坑:一定要在循环外面创建进程池,不然会一直创建 pool = multiprocessing.Pool(30) for Size in Size_list: index,Size_Asin = Size.xpath('./@value')[0].split(",") Size_Asin_url = "https://www.amazon.cn/dp/%sth=1&psc=1" % S…
1. 背景 由于需要写python程序, 定时.大量发送htttp请求,并对结果进行处理. 参考其他代码有进程池,记录一下. 2. 多进程 vs 多线程 c++程序中,单个模块通常是单进程,会启动几十.上百个线程,充分发挥机器性能.(目前c++11有了std::thread编程多线程很方便,可以参考我之前的博客) shell脚本中,都是多进程后台执行.({ ...} &, 可以参考我之前的博客,实现shell并发处理任务) python脚本有多线程和多进程.由于python全局解锁锁的GIL的存…
平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘__main__’ :语句的下面,才能正常使用Windows下的进程模块.Unix/Linux下则不需要. Pool类 Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求.如果池满,请求就会告知先等待,直到池中有进程结束, 才会…
python中两个常用来处理进程的模块分别是subprocess和multiprocessing,其中subprocess通常用于执行外部程序,比如一些第三方应用程序,而不是Python程序.如果需要实现调用外部程序的功能,python的psutil模块是更好的选择,它不仅支持subprocess提供的功能,而且还能对当前主机或者启动的外部程序进行监控,比如获取网络.cpu.内存等信息使用情况,在做一些自动化运维工作时支持的更加全面.multiprocessing是python的多进程模块,主要…
本文转至http://www.cnblogs.com/kaituorensheng/p/4465768.html,在其基础上进行了一些小小改动. 在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效.Pool可以提供指定数量的进程供用户…
一般我们是通过动态创建子进程(或子线程)来实现并发服务器的,但是会存在这样一些缺点: 1.动态创建进程(或线程)比较耗费时间,这将导致较慢的服务器响应.  2.动态创建的子进程通常只用来为一个客户服务,这样导致了系统上产生大量的细微进程(或线程).进程和线程间的切换将消耗大量CPU时间.  3.动态创建的子进程是当前进程的完整映像,当前进程必须谨慎的管理其分配的文件描述符和堆内存等系统资源,否则子进程可能复制这些资源,从而使系统的可用资源急剧下降,进而影响服务器的性能. 所以呢,就引入了进程池与…
import os,time,random from multiprocessing import Pool def task(name): print('正在运行的任务:%s,PID:(%s)'%(name,os.getpid())) start=time.time() time.sleep(random.random()*10) end=time.time() print('任务:%s,用时:%0.2f 秒'%(name,(end-start))) if __name__=='__main_…