文献地址 链接:https://pan.baidu.com/s/1gHrpnOf1FXLp9u8OJ2-oCg 提取码:y2w6 作者 Shashank Kotyan, Danilo Vasconcellos Vargas and Venkanna U. 摘要 从本质上讲,驾驶是一个适合强化学习范式的马尔可夫决策过程.本文提出了一种不需要人工辅助就能学会驾驶汽车的新型算法.我们使用强化学习和进化策略的概念在二维仿真环境中训练我们的模型.通过在自动编码器中引入不同的图像,我们的模型的架构超越了世界…
张宁 Visual-Based Autonomous Driving Deployment from a Stochastic and Uncertainty-Aware Perspective Lei Tai Peng Yun Yuying Chen Congcong Liu Haoyang Ye Ming Liu 从随机和不确定性角度出发的基于视觉的自动驾驶部署链接:https://pan.baidu.com/s/1iako8pSu9nuwCzIfF_M2EQ 提取码:j8bg Abstra…
论文地址:https://asa.scitation.org/doi/abs/10.1121/1.5036725 深度神经网络在浅水环境中的源定位 摘要: 深度神经网络(DNNs)在表征复杂的非线性关系方面具有优势.本文将DNNs应用于浅水环境下的源定位.提出了两种方法,通过不同的神经网络结构来估计宽带源的范围和深度.第一阶段采用经典的两阶段方案,特征提取和DNN分析是两个独立的步骤;与模态信号空间相关联的特征向量被提取为输入特征.然后,利用时滞神经网络对长期特征表示进行建模,构建回归模型;第二…
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving>,论文中的效果还不错,后来查了一下,有一个Tensorflow版本的实现,因此在自己的机器上配置了Tensorflow的环境,然后将其给出的demo跑通了,其中遇到了一些小问题,通过查找网络上的资料解决掉了,在这里…
SSD英文论文翻译 SSD: Single Shot MultiBoxDetector 2017.12.08    摘要:我们提出了一种使用单个深层神经网络检测图像中对象的方法.我们的方法,名为SSD,将边界框的输出空间离散化为一组默认框,该默认框在每个特征图位置有不同的宽高比和尺寸.在预测期间,网络针对每个默认框中的每个存在对象类别生成分数,并且对框进行调整以更好地匹配对象形状.另外,网络组合来自具有不同分辨率的多个特征图的预测,以适应处理各种尺寸的对象.我们的SSD模型相对于需要region…
Andrew Ng deeplearning courese-4:Convolutional Neural Network Convolutional Neural Networks: Step by Step Convolutional Neural Networks: Application Residual Networks Autonomous driving - Car detection YOLO Face Recognition for the Happy House Art: N…
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Network In Network) [中文译名] 网络中的网络 [论文链接]https://arxiv.org/abs/1312.4400 [补充] 1)NIN结构的caffe实现: 因为我们可以把全连接层当作为特殊的卷积层,所以呢, NIN在caffe中是非常 容易实现的: https://githu…
论文标题:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文作者:Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam 论文地址:https://arxiv.org/abs/1704.04861…
[论文翻译] 分布式训练 Parameter sharding 之 ZeRO 目录 [论文翻译] 分布式训练 Parameter sharding 之 ZeRO 0x00 摘要 0x01 综述 1.1 挑战 1.1.1 显存效率 1.1.2 计算效率 1.2 权衡 1.2.1 数据并行 1.2.2 模型并行 1.2.3 流水线并行 1.3 通过 3D 并行实现内存和计算效率 1.4 3D 并行如何利用每种并行性 0x02 引论 2.1 原文摘要 2.2 原文引论 2.2.1 优化模型状态 2.2…
[论文翻译] 分布式训练 Parameter sharding 之 Google Weight Sharding 目录 [论文翻译] 分布式训练 Parameter sharding 之 Google Weight Sharding 0x00 摘要 0x01 引文 0x02 XLA背景知识 2.1 All-reduce. 2.2 算子融合 0x03 权重更新分片 3.1 All-reduce分解 3.2 挑战 0x04 图转换 4.1 分片表示 4.1.1 数据格式化 4.1.2 Non-ele…