Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition.这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD. 巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升10倍.对于迭…
一.前述 Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量. 累机器相当于统筹大变量,常用于计数,统计. 二.具体原理 1.广播变量 广播变量理解图 注意事项 1.能不能将一个RDD使用广播变量广播出去? 不能,因为RDD是不存储数据的.可以将RDD的结果广播出去. 2. 广播变量只能在Driver端定义,不能在Executor端定义. 3. 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量…
一.RDD的概述 1.1 什么是RDD RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片都…
Spark--DataFrames,RDD,DataSets 一.弹性数据集(RDD) 创建RDD 1.1RDD的宽依赖和窄依赖 二.DataFrames 三.DataSets 四.什么时候使用DataFrame或者Dataset? 五.广播变量与累加器 5.1 广播变量broadcast variable 5.1.1 广播变量的意义 5.1.2 广播变量图解 5.1.3 如何定义广播变量 5.1.4 如何还原一个广播变量 5.1.5 广播变量的使用 5.1.6 定义广播变量注意点 5.2 累加…
Spark 的一个核心功能是创建两种特殊类型的变量:广播变量和累加器 广播变量(groadcast varible)为只读变量,它有运行SparkContext的驱动程序创建后发送给参与计算的节点.对那些需要让工作节点高效地访问相同数据的应用场景,比如机器学习.我们可以在SparkContext上调用broadcast方法创建广播变量: val broadcastList = sc.broadcast(List("Spark","Impala","Hado…
目录 一. 广播变量 使用 二. 累加器 使用 使用场景 自定义累加器 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序.通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变量(broadcast variable)和累加器(accumulator)…
广播变量 背景 一般Task大小超过10K时(Spark官方建议是20K),需要考虑使用广播变量进行优化.大表小表Join,小表使用广播的方式,减少Join操作. 参考:Spark广播变量与累加器 Local Dir 背景 shuffle过程中,临时数据需要写入本地磁盘.本地磁盘的临时目录通过参数spark.local.dir配置. 性能优化点 spark.local.dir支持配置多个目录.配置spark.local.dir有多个目录,每个目录对应不同的磁盘,这样可以提升IO效率.另外,可以采…
广播变量.累加器.collect spark集群由两类集群构成:一个驱动程序,多个执行程序. 1.广播变量 broadcast 广播变量为只读变量,它由运行sparkContext的驱动程序创建后发送给会参与计算     的节点.也可被非驱动程序所在节点(即工作节点)访问,访问是调用该变量的value方法. 广播变量是存储在内存中. sc.parallelize(List("1","2","3")).map(x => broadcastAL…
转载自:https://blog.csdn.net/Android_xue/article/details/79780463 Spark两种共享变量:广播变量(broadcast variable)与累加器(accumulator) 累加器用来对信息进行聚合,而广播变量用来高效分发较大的对象. 共享变量出现的原因: 通常在向 Spark 传递函数时,比如使用 map() 函数或者用 filter() 传条件时,可以使用驱动器程序中定义的变量,但是集群中运行的每个任务都会得到这些变量的一份新的副本…
一.概述 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序.通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变(broadcast variable)和累加器(accumulator) 二.广播变量broadcast variable 2.1 为什么…