BN算法】的更多相关文章

批量归一化(BN: Batch Normalization) 1 BN训练 1)随机梯度下降法(SGD)对于训练深度网络简单高效,但是它有个毛病,就是需要我们人为的去选择参数,比如学习率.参数初始化.权重衰减系数.Drop out比例等.这些参数的选择对训练结果至关重要,以至于我们很多时间都浪费在这些的调参上.那么使用BN(详见论文<Batch Normalization_ Accelerating Deep Network Training by Reducing Internal Covar…
好处: 1.归一化后有什么好处呢?原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低: 2.另外一方面,一旦每批训练数据的分布各不相同(batch 梯度下降),那么网络就要在每次迭代都去学习适应不同的分布,这样将会大大降低网络的训练速度,这也正是为什么我们需要对数据都要做一个归一化预处理的原因. 原因: 我们把网络中间层在训练过程中,数据分布的改变称之为:“Internal  Covariate Shift”.Paper所提出的算法,…
Batch Normalization 学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce 一.背景意义 本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:<Batch Normalization: Accelerating Deep Network Training by  Reducing Internal Covariate Shift>,这个算法目前已经被大量的应用,最新的文献算…
# 23 Batch Normalization import numpy as np import tensorflow as tf import matplotlib.pyplot as plt ACTIVATION = tf.nn.tanh N_LAYERS = 7 N_HIDDEN_UNITS = 30 def fix_seed(seed=1): # reproducible np.random.seed(seed) tf.set_random_seed(seed) def plot_h…
原文地址: http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce ---------------------------------------------------------------------------------------------------- 一.背景意义 本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:<Batch Normalization: Accelerating Deep N…
Batch Normalization Batch Normalization是深度学习领域在2015年非常热门的一个算法,许多网络应用该方法进行训练,并且取得了非常好的效果. 众所周知,深度学习是应用随机梯度下降法对网络进行训练,尽管随机梯度下降训练神经网络非常有效,但是它有一个缺点,就是需要人为的设定很多参数,比如学习率,权重衰减系数,Dropout比例等.这些参数的选择对训练结果至关重要,以至于训练的大多数精力都耗费在了调参上面.BN算法就可以完美的解决这些问题. 当我们使用了BN算法,我…
Batch Normalization Batch归一化 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.4正则化网络的激活函数 Batch归一化会使你的参数搜索问题变得很容易,使神经网络对超参数的选择更加稳定.超参数的范围会更庞大,工作效果也更好.也会使你更容易的训练甚至是深层网络. 对于logistic回归来说 正则化原理 \[u=\frac{1}{m}\sum x^{i}(求出平均值u)\]\[x=x-u\] \[\sigma^{2}=\frac{1}{m}\sum(x^{i}…
CNN网络的迁移学习(transfer learning) 1.在ImageNet上进行网络的预训练 2.将最上方的层,即分类器移除,然后将整个神经网络看成是固定特征提取器来训练,将这个特征提取器置于你的数据集上方,然后替换原先作为分类器的层,根据数据集的大小来确定如何对卷积网络的最后一层进行训练,或者你可以对整个网络的一部分反向传播进行微调. 3.如果你有更大的数据集,你可以在整个网络进行更深的反向传播 拥有大量的预训练好的模型,所以没有大量的数据也不会有太多影响,你只需要找一个经过预训练的卷…
转自:参数优化方法 1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) - 权重初始化(Weight Initialization) - 正则化(Regularization:避免过拟合的一种技术) - 梯度检查(Gradient checking) 2)动态训练(Training dynamics)          - 跟踪学习过程 (Baby…
Batch Nornalization Question? 1.是什么? 2.有什么用? 3.怎么用? paper:<Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift> 先来思考一个问题:我们知道在神经网络训练开始前,都要对输入数据做一个归一化处理,那么具体为什么需要归一化呢?归一化后有什么好处呢?原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据…