Spark on Yarn with HA】的更多相关文章

Spark 可以放到yarn上面去跑,这个毫无疑问.当Yarn做了HA的时候,网上会告诉你基本Spark测不需做太多的关注修改,实际不然. 除了像spark.yarn开头的相关配置外,其中一个很重要的坑是spark-yarn依赖包的Hadoop版本问题.Spark1.6.x的spark-yarn默认的Hadoop是2.2.0,而现在大部分的Hadoop2应该都升到了2.6或2.7,在没做HA的时候,这部分yarn api是兼容的,然而yarn做了HA后,依赖旧版本的yarn api不会去自己找…
问题一: 18/03/15 07:59:23 INFO yarn.Client: client token: N/A diagnostics: Application application_1521099425266_0002 failed 2 times due to AM Container for appattempt_1521099425266_0002_000002 exited with exitCode: 1 For more detailed output, check app…
Spark On Yarn: 从0.6.0版本其,就可以在在Yarn上运行Spark 通过Yarn进行统一的资源管理和调度 进而可以实现不止Spark,多种处理框架并存工作的场景 部署Spark On Yarn的方式其实和Standalone是差不多的,区别就是需要在spark-env.sh中添加一些yarn的环境配置,在提交作业的时候会根据这些配置加载yarn的信息,然后将作业提交到yarn上进行管理 首先请确保已经部署了Yarn,相关操作请参考: hadoop2.2.0集群安装和配置 部署完…
?/ 为什么需要 Yarn? /? Yarn?的全称是?Yet Anther Resource Negotiator(另一种资源协商者).它作为 Hadoop?的一个组件,官方对它的定义是一个工作调度和集群资源管理的框架. Yarn?最早出现于?Hadoop 0.23?分支中,0.23?分支是一个实验性分支,之后经过了几次迭代,最后发布于?2014?年?6?月的?0.23.11?版本(该分支的最后一个版本).在?0.23.0?发布后不久的?2011?年?12?月,Hadoop?的 0.20?分支…
Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on yarn了,假设现在准备环境已经部署完毕,这里是在CDH 环境下部署Spark 除了上面的环境准备,安装Spark前,还应该保证Scala正常安装,基于Scala的情况下,就可以开始部署Spark了, 首先还是解压Spark,安装位置就是/bigdata/spark -bin-hadoop2..t…
参考原文:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 运行文件有几个G大,默认的spark的内存设置就不行了,需要重新设置.还没有看Spark源码,只能先搜搜相关的博客解决问题. 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client 模式. yarn-cluster模式.当在YARN上运行Spark作业,每个Sp…
最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大家的面前. 作为技术发烧友,作为一个看客,来围观下,不过从PPT中列出来的技术来看,未来的发展趋势还是说是有的,而且还是很有发展前景的. 现在Spark和Yarn也就发布2年多的时间,随着社区力量的跟上,不断的将之前的项目都放到一个更好的资源架构的整合上来实现.特别是放到内存上来实现,在速度和效率上…
当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit --master yarn-cluster   #使用集群调度模式(一般使用这个参数) --num-executors  132      # executor 数量 --executor-cores  2        #设置单个executor能并发执行task数,根据job设置,推荐值2-16 (…
运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大家也可参考spark的官网地址:http://spark.apache.org/docs/latest/running-on-yarn.html 1. 在yarn上执行spark 需要确保提交spark任务的客户端服务器上, HADOOP_CONF_DIR 或者 YARN_CONF_DIR 目录中包…
今天测试过程中发现YARN Node变成Unhealthy了,后来定位到硬盘空间不够..... 通过查找大于100M的文件时发现有N多个spark-assembly-1.4.0-SNAPSHOT-hadoop2.5.0-cdh5.3.1.jar包,大小为170多M, 每提交一个application到yarn上执行,就会上传一个assembly包,application个数一多,磁盘就本占用了N多空间.... 解决方法参见[Spark On Yarn中spark.yarn.jar属性的使用]…