觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(regularization).另一个解决高方差的方法就是准备更多的数据,这也是非常可靠的方法. 正则化的原理 正则化公式简析 L1范数:向量各个元素绝对值之和 L2范数:向量各个元素的平方求和然后求平方根 Lp范数:向量各个元素绝对值的p次方求和然后求1/p次方 L∞范数:向量各个元素求绝对值,最大那…
最优化方法:L1和L2正则化regularization http://blog.csdn.net/pipisorry/article/details/52108040 机器学习和深度学习常用的规则化方法之一:L范数正则化(规格化). 一般来说,监督学习可以看做最小化下面的目标函数): 规则项Ω(w) loss项可参考[机器学习算法及其损失函数].Note:似然函数(likelihood function)的负对数被叫做误差函数(error function). 这里我们先把目光转向“规则项Ω(…
7.1 过拟合的问题 到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差. 在这段视频中,我将为你解释什么是过度拟合问题,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改善或者减少过度拟合问题. 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能…
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 4.正则化与过拟合问题 Regularization/The Problem of Overfitting 1 过拟合问题 The problem of overfitting 首先,Andrew Ng还是对之前几节中提到过的房屋面积-房价问题进…
欠拟合(Underfitting)与过拟合(Overfitting) 上面两张图分别是回归问题和分类问题的欠拟合和过度拟合的例子.可以看到,如果使用直线(两组图的第一张)来拟合训,并不能很好地适应我们的训练集,这就叫欠拟合(Underfitting),但是如果x的次数太高(两组图的第三张),拟合虽然很好,但是预测能力反而变差了,这就是过拟合(Overfitting). 对于欠拟合,我们可以适当增加特征,比如加入x的多次方.通常这很少发生,发生的多的都是过拟合.那么如何处理过度拟合呢? 1. 丢弃…
1. The Problem of Overfitting 1 还是来看预测房价的这个例子,我们先对该数据做线性回归,也就是左边第一张图. 如果这么做,我们可以获得拟合数据的这样一条直线,但是,实际上这并不是一个很好的模型.我们看看这些数据,很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓.因此线性回归并没有很好拟合训练数据. 我们把此类情况称为欠拟合(underfitting),或者叫作叫做高偏差(bias). 这两种说法大致相似,都表示没有很好地拟合训练数据.高偏差这个词是…
过拟合(over-fitting) 欠拟合 正好 过拟合 怎么解决 1.丢弃一些不能帮助我们正确预测的特征.可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如 PCA) 2.正则化. 保留所有的特征,但是减少参数的大小(magnitude) 回归问题的模型是 是高次项导致了这个问题 我们决定要减少…
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,这个约束项被叫做正则化项(regularizer).在线…
正则化(Regularization) 概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. L0正则化 稀疏的参数可以防止过拟合,因此用L0范数(非零参数的个数)来做正则化项是可以防止过拟合的. 从直观上看,利用非零参数的个数,可以很好的来选择特征,实现特征稀疏的效果,具体操作时选择参数非零的特征即可.但因为L0正则化很难求解,是个NP难问题,就是难以优化,因此一般采用L1正则化.L1正则化是L0正则化的最优凸近似,比…
7.1  过拟合的问题 7.2  代价函数 7.3  正则化线性回归 7.4  正则化的逻辑回归模型 7.1  过拟合的问题 如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为 0),但是可能会不能推广到新的数据. 下图是一个回归问题的例子:…
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大 2 )特征数目过多导致模型过于复杂,如下面的图所示: 看上图中的多项式回归(Polynomial regression),左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于Logistic有同样的情况 2)如何避免过拟合 1) 控制特征的数目,可以通过特征组…
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对值损失函数和平方损失函数 区别: 分析: robust: 与L2相比,L1受异常点影响比较小,因此稳健 stable: 如果仅一个点,L1就是一个直线,L2是二次,对于直线来说是多解,因此不稳定,而二次函数只有一个极小值点 L1.L2正则化 为什么出现正则化? 正则化的根本原因是 输入样本的丰度不够…
1 过拟合 过拟合就是训练模型的过程中,模型过度拟合训练数据,而不能很好的泛化到测试数据集上.出现over-fitting的原因是多方面的: 1) 训练数据过少,数据量与数据噪声是成反比的,少量数据导致噪声很大 2 )特征数目过多导致模型过于复杂,如下面的图所示: 看上图中的多项式回归(Polynomial regression),左边为模型复杂度很低,右边的模型复杂度就过高,而中间的模型为比较合适的模型,对于Logistic有同样的情况 2)如何避免过拟合 1) 控制特征的数目,可以通过特征组…
正则化(Regularization - Solving the Problem of Overfitting) 欠拟合(高偏差) VS 过度拟合(高方差) Underfitting, or high bias, is when the form of our hypothesis function h maps poorly to the trend of the data. It is usually caused by a function that is too simple or us…
如果你怀疑神经网络过度拟合的数据,即存在高方差的问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,但是你可能无法时时准备足够多的训练数据,或者获取更多数据的代价很高.但正则化通常有助于避免过拟合或者减少网络误差,下面介绍正则化的作用原理. 我们用逻辑回归来实现这些设想. 逻辑回归的损失函数为 然后求损失函数J的最小值 其中,分别表示预测值与真实值,w,b是逻辑回归的两个参数,. 在逻辑回归中加入正则化,只需要添加参数λ,也就是正则化参数,式子如下: 其中,向量参数w的…
原文链接:https://developers.google.com/machine-learning/crash-course/regularization-for-simplicity 正则化指的是降低模型的复杂度以减少过拟合. 1- L₂正则化 泛化曲线:显示的是训练集和验证集相对于训练迭代次数的损失. 如果说某个模型的泛化曲线显示:训练损失逐渐减少,但验证损失最终增加.那么就可以说,该模型与训练集中的数据过拟合.根据奥卡姆剃刀定律,或许可以通过降低复杂模型的复杂度来防止过拟合,这种原则称…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# logistic function(sigmo…
正则化(Regularization)是机器学习中抑制过拟合问题的常用算法,常用的正则化方法是在损失函数(Cost Function)中添加一个系数的\(l1 - norm\)或\(l2 - norm\)项,用来抑制过大的模型参数,从而缓解过拟合现象. \(l1 - norm\)的正则项还具有特征选择的能力,而\(l2 - norm\)的正则项没有.直观上,对于小于1的模型参数,\(l1 - norm\)的惩罚力度要远远大于\(l2 - norm\)的惩罚力度,这是\(l1 - norm\)特征…
目录 1. 什么是正则化?正则化有什么作用? 1.1 什么是正则化? 1.2 正则化有什么作用? 2. L1,L2正则化? 2.1 L1.L2范数 2.2 监督学习中的L1.L2正则化 3. L1.L2正则化的作用 3.1 稀疏模型与特征选择--L1 3.2 L1的直观理解 3.3 L2正则化 4. 如何选择正则化参数? Reference   有关机器学习中的L1.L2正则化,有很多的博文都在说这件事情,大致看了相关的几篇博客文章,做下总结供自己学习.当然了,也不敢想象自己能够把相关的知识都搞…
搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不到万不得已,我们也还是宁可用L2正则,因为L2正则计算起来方便得多... 正则化项不应该以正则化的表面意思去理解,应该翻译为规则化才对! 一般回归分析中回归ww表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制).L1正则化和L2正则化的说明如下: L1正则化是指权值向量ww中各个元素的绝…
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Underfitting and overfitting. 3.2 Bayesian statistics and regularization. 3.3 Optimize Cost function by regularization. 3.3.1 Regularized linear regressi…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
一.Cross-entropy 我们理想情况是让神经网络学习更快 假设单模型: 只有一个输入,一个神经元,一个输出   简单模型: 输入为1时, 输出为0 神经网络的学习行为和人脑差的很多, 开始学习很慢, 后来逐渐增快. 为什么? 学习慢 => 偏导数 ∂C/∂w 和 ∂C/∂b 值小 回顾之前学习的Cost函数: 回顾sigmoid函数 当神经元的输出接近1或0时,曲线很平缓, 因而会使偏导数 ∂C/∂w 和 ∂C/∂b 值小 学习很慢,如何增快学习? 因此神经网络引入交叉熵代价函数cros…
到现在为止,我们已经学习了几种不同的学习算法,包括线性回归和逻辑回归,它们能够有效地解决许多问题,但是当将它们应用到某些特定的机器学习应用时,会遇到过拟合(over-fitting)的问题,可能会导致它们效果很差. 在这段视频中,我会解释什么是过度拟合问题,并且在此之后接下来的几个视频中,我们将谈论一种称为正则化(regularization)的技术,它可以改善或者减少过度拟合问题.如果我们有非常多的特征,我们通过学习得到的假设可能能够非常好地适应训练集(代价函数可能几乎为0),但是可能会不能推…
过节福利,我们来深入理解下L1与L2正则化. 1 正则化的概念 正则化(Regularization) 是机器学习中对原始损失函数引入额外信息,以便防止过拟合和提高模型泛化性能的一类方法的统称.也就是目标函数变成了原始损失函数+额外项,常用的额外项一般有两种,英文称作\(ℓ1-norm\)和\(ℓ2-norm\),中文称作L1正则化和L2正则化,或者L1范数和L2范数(实际是L2范数的平方). L1正则化和L2正则化可以看做是损失函数的惩罚项.所谓惩罚是指对损失函数中的某些参数做一些限制.对于线…
转自 http://blog.csdn.net/u014568921/article/details/49383379 另外一个很容易理解的文章 :http://www.jianshu.com/p/005a4e6ac775 更多参考如下 机器学习(四)— 从gbdt到xgboost 机器学习常见算法个人总结(面试用) xgboost入门与实战(原理篇) Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting R…
1 训练/验证/测试集( Train/Dev/test sets ) 构建神经网络的时候有些参数需要选择,比如层数,单元数,学习率,激活函数.这些参数可以通过在验证集上的表现好坏来进行选择. 前几年机器学习普遍的做法: 把数据分成60%训练集,20%验证集,20%测试集.如果有指明的测试集,那就用把数据分成70%训练集,30%验证集. 现在数据量大了,那么验证集和数据集的比例会变小.比如我们有100w的数据,取1w条数据来评估就可以了,取1w做验证集,1w做测试集,剩下的用来训练,即98%的训练…
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…