使用concurrent.futures模块中的线程池与进程池 线程池与进程池 以线程池举例,系统使用多线程方式运行时,会产生大量的线程创建与销毁,创建与销毁必定会带来一定的消耗,甚至导致系统资源的崩溃,这时使用线程池就是一个很好的解决方式. “池”就说明了这里边维护了不止一个线程,线程池会提前创建好规定数量的线程,把需要使用多线程的任务提交给线程池,线程池会自己选择空闲的线程来执行提交的任务,任务完成后,线程并不会在池子中销毁,而是继续存在并等待完成下一个分配的任务.当线程池以满的时候,提交的…
一.threadpool   基本用法 pip install threadpool pool = ThreadPool(poolsize) requests = makeRequests(some_callable, list_of_args, callback) [pool.putRequest(req) for req in requests] pool.wait() 第一行定义了一个线程池,表示最多可以创建poolsize这么多线程: 第二行是调用makeRequests创建了要开启多线…
一.线程池 很久(python2.6)之前python没有官方的线程池模块,只有第三方的threadpool模块, 之后再python2.6加入了multiprocessing.dummy 作为可以使用线程池的方式, 在python3.2(2012年)之后加入了concurrent.futures模块(python3.1.5也有,但是python3.1.5发布时间晚于python3.2一年多),这个模块是python3中自带的模块,但是python2.7以上版本也可以安装使用. 下面分别介绍下各…
初识 Python中已经有了threading模块,为什么还需要线程池呢,线程池又是什么东西呢?在介绍线程同步的信号量机制的时候,举得例子是爬虫的例子,需要控制同时爬取的线程数,例子中创建了20个线程,而同时只允许3个线程在运行,但是20个线程都需要创建和销毁,线程的创建是需要消耗系统资源的,有没有更好的方案呢?其实只需要三个线程就行了,每个线程各分配一个任务,剩下的任务排队等待,当某个线程完成了任务的时候,排队任务就可以安排给这个线程继续执行. 这就是线程池的思想(当然没这么简单),但是自己编…
写在前面的话 (https://jq.qq.com/?_wv=1027&k=rX9CWKg4) 文章来源于互联网从Python3.2开始,标准库为我们提供了 concurrent.futures 模块,它提供了 ThreadPoolExecutor (线程池)和ProcessPoolExecutor (进程池)两个类. 相比 threading 等模块,该模块通过 submit 返回的是一个 future 对象,它是一个未来可期的对象,通过它可以获悉线程的状态主线程(或进程)中可以获取某一个线程…
python中ThreadPoolExecutor(线程池)与ProcessPoolExecutor(进程池)都是concurrent.futures模块下的,主线程(或进程)中可以获取某一个线程(进程)执行的状态或者某一个任务执行的状态及返回值. 通过submit返回的是一个future对象,它是一个未来可期的对象,通过它可以获悉线程的状态 ThreadPoolExecutor(线程池) 通过submit函数提交执行的函数到线程池中,done()判断线程执行的状态: import time f…
线程池concurrent.futures.ThreadPoolExecutor模板 import time from concurrent.futures import ThreadPoolExecutor from queue import Queue # 线程数 THREAD_NUM = 5 def do_task(task): """消费任务""" print(task) def run(task_queue): ""…
在前面的文章中我们已经介绍了很多关于python线程相关的知识点,比如 线程互斥锁Lock / 线程事件Event / 线程条件变量Condition 等等,而今天给大家讲解的是 线程池ThreadPoolExecutor,可能很多小伙伴会疑惑,threading 模块能创建线程,ThreadPoolExecutor 也能创建线程,两者都有什么区别呢? 众所周知,程序中使用线程会提高运行效率,虽然线程是计算机的最小单位,但是线程的创建和使用一样会占用计算机资源和产生开销,一旦创建成千上万的线程,…
在学习concurrent库时遇到了一些问题,后来搞清楚了,这里记录一下 先看个例子: import time from concurrent.futures import ThreadPoolExecutor def foo(): print('enter at {} ...'.format(time.strftime('%X'))) time.sleep(5) print('exit at {} ...'.format(time.strftime('%X'))) executor = Thr…
本节内容 线程池 进程池 协程 try异常处理 IO多路复用 线程的继承调用 1.线程池 线程池帮助你来管理线程,不再需要每个任务都创建一个线程进行处理任务. 任务需要执行时,会从线程池申请线程,有则使用线程池的线程执行任务,如果没有就等着,其他在执行的任务执行完毕后释放线程,等待的任务就可以使用释放的线程来执行操作了. from concurrent.futures import ThreadPoolExecutor import requests import time def taks(u…