Self-Attention学习】的更多相关文章

模型汇总24 - 深度学习中Attention Mechanism详细介绍:原理.分类及应用 lqfarmer 深度学习研究员.欢迎扫描头像二维码,获取更多精彩内容. 946 人赞同了该文章 Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism.Attention Mechanism目前非常流行,广泛应用于机器翻译.语音识别.图像标注(Image Caption)…
CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务…
1.摘要: 提出一个Attentional FM,Attention模型+因子分解机,其通过Attention学习到特征交叉的权重.因为很显然不是所有的二阶特征交互的重要性都是一样的,如何通过机器自动的从中学习到这些重要性是这篇论文解决的最重要的问题, 比如:作者举了一个例子,在句子"US continues taking a leading role on foreign payment transparency"中,除了"foreign payment transpare…
本篇随笔为转载,原文地址:知乎,深度学习中Attention Mechanism详细介绍:原理.分类及应用.参考链接:深度学习中的注意力机制. Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism.Attention Mechanism目前非常流行,广泛应用于机器翻译.语音识别.图像标注(Image Caption)等很多领域,之所以它这么受欢迎,是因为Atten…
本文近期学习NMT相关知识,学习大佬资料,汇总便于后期复习用,有问题,欢迎斧正. 目录 RNN Seq2Seq Attention Seq2Seq + Attention Transformer Transformer-xl 1. RNN 根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合.如下图, one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景.one to many 结构,给一个输入得到一系列输出,…
http://aclweb.org/anthology/W18-0505 https://sites.google.com/site/nadeemf0755/research/linguistic-complexity https://github.com/Farahn/Liguistic-Complexity abstract:文本自动难度分析现有工作--基于知识驱动的特征作为输入的线性模型优点:可解释性缺点:短文本的准确率差传统的可读性指标:不能泛化到信息文本比如science我们的工作--…
最近有个任务:利用 RNN 进行句子补全,即给定一个不完整的句子,预测其后续的字词.本文使用了 Seq2Seq 模型,输入为 5 个中文字词,输出为 1 个中文字词.目录 关于RNN 语料预处理 搭建数据集 搭建模型 训练模型 测试模型 保存/加载模型 1.关于RNN 自被提出以来,循环神经网络(Recurrent Neural Networks,RNN) 在 NLP 领域取得了巨大的成功与广泛的应用,也由此催生出了许多新的变体与网络结构.由于网上有众多资料,在此我也只做简单的讲解了.首先,讲讲…
最近有个任务:利用 RNN 进行句子补全,即给定一个不完整的句子,预测其后续的字词.本文使用了 Seq2Seq 模型,输入为5个中文字词,输出为一个中文字词. 目录 关于RNN 语料预处理 搭建数据集 搭建模型 训练模型 测试模型 保存/加载模型 1.关于RNN 自被提出以来,循环神经网络(Recurrent Neural Networks,RNN) 在 NLP 领域取得了巨大的成功与广泛的应用,也由此催生出了许多新的变体与网络结构.由于网上有众多资料,在此我也只做简单的讲解了.首先,讲讲 RN…
学习的一个github上的代码,分析了一下实现过程.代码下载链接:https://github.com/Choco31415/Attention_Network_With_Keras 代码的主要目标是通过一个描述时间的字符串,预测为数字形式的字符串.如“ten before ten o'clock a.m”预测为09:50 在jupyter上运行,代码如下: 1,导入模块,好像并没有全部使用到,如Permute,Multiply,Reshape,LearningRateScheduler等,这些…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…