首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
洛谷P2480 古代猪文
】的更多相关文章
洛谷P2480 古代猪文
这道题把我坑了好久...... 原因竟是CRT忘了取正数! 题意:求 指数太大了,首先用欧拉定理取模. 由于模数是质数所以不用加上phi(p) 然后发现phi(p)过大,不能lucas,但是它是个square free,可以分解质因数然后lucas然后CRT. 然后就没有然后了......模板套来套去...... 注意CRT的结果可能是负数,要取正. #include <cstdio> #include <algorithm> #define say(a) printf(#a);…
洛谷 [P2480] 古代猪文
卢卡斯定理 注意特判底数和模数相等的情况 http://www.cnblogs.com/poorpool/p/8532809.html #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #define ll long long using namespace std; const int MOD = 9999…
洛谷 P2480 [SDOI2010]古代猪文 解题报告
P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东…
洛咕 P2480 [SDOI2010]古代猪文
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658}}\) 因数可以\(O(\sqrt n)\)枚举. 分解质因数,\(999911658=2×3×4679×35617\),对这4个模数用lucas跑一遍答案,用crt合并. // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il i…
【题解】古代猪文 [SDOI2010] [BZOJ1951] [P2480]
[题解]古代猪文 [SDOI2010] [BZOJ1951] [P2480] 在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--"--选自猪王国民歌 [题目描述] \((\)仅供观赏\()\) 猪王国的文明源远流长,博大精深. \(iPig\)在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为\(N\).当然,一种语言如果字数很多,字典也相应会很大.当时的猪王国国王考虑到如果修一本字典,规模有可能远远超过康熙字典…
【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理
P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精深. \(iPig\) 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(n\).当然,一种语言如果字数很多,字典也相应会很大.当时的猪王国国王考虑到如果修一本字典,规模有可能远远超过康熙字典,花费的猪力.物力将难以估量.故考虑再三没有进行这一项劳猪伤财之举.当然,猪王国的文字后来随着…
P2480 [SDOI2010]古代猪文
P2480 [SDOI2010]古代猪文 比较综合的一题 前置:Lucas 定理,crt 求的是: \[g^x\bmod 999911659,\text{其中}x=\sum_{d\mid n}\tbinom{n}{d} \] 由于这个\(999911659\)是质数,肯定于\(g\)互质,所以由欧拉定理很容易证明: \[a^{\varphi(p)}\equiv 1\pmod p\Rightarrow a^{k\bmod \varphi(p)}\equiv a^k\pmod p \] 那么可以得出…
【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际上是个素数,由欧拉定理 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659=G^{\sum d|n\;C_n^d\;mod\;99911658}\;mod \; 999911659 $ 主要是解决 $ \sum d|n\;C_n^d\;mod\;999911658 $ 注…
【BZOJ1951】古代猪文(CRT,卢卡斯定理)
[BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相当于是上面那坨东西的结果对于\(\varphi\)的取值. 但是\(\varphi\)不是质数,不好直接\(Lucas\)定理,把\(\varphi\)分解质因数之后, 直接\(CRT\)合并结果就好了,所以这个就是\(ex\_Lucas\) #include<iostream> #include…
luogu_2480: 古代猪文
洛谷:2480古代猪文 题意描述: 给定两个整数\(N,G\),求$G^{\sum_{k|n}C_n^k} mod 999911659 $. 数据范围: \(1\leq N\leq 10^9,1\leq G\leq 10^9\). 思路: 对于这样一个式子,暴力肯定是不可能的,所以我们先来挖掘一些性质. 模数\(999911659\)是一个质数,我们可以想到对这个式子进行欧拉降幂. 我们可以得到式子: \(G^{\sum_{k|n}C_n^k}\equiv\ G^{\sum_{k|n}C_n^k…