学习python 多进程和多线程】的更多相关文章

''' 学习多进程和多线程 ''' import multiprocessing def deadLoop(): while True: pass if __name__ == '__main__':#多进程必须写这一行 p1 = multiprocessing.Process(target=deadLoop) p1.start() deadLoop() ''' 测试发现多进程能让cpu到百分之60, ''' import threading def test(): while True: pa…
进程(process)和线程(thread)是非常抽象的概念.多线程与多进程编程对于代码的并发执行,提升代码运行效率和缩短运行时间至关重要.下面介绍一下python的multiprocess和threading模块进行多线程和多进程编程. 重要知识点 - 什么是进程(process)和线程(thread) 进程是操作系统分配资源的最小单元, 线程是操作系统调度的最小单元. 一个应用程序至少包括1个进程,而1个进程包括1个或多个线程,线程的尺度更小. 每个进程在执行过程中拥有独立的内存单元,而一个…
介绍如何使用python的multiprocess和threading模块进行多线程和多进程编程. Python的多进程编程与multiprocess模块 python的多进程编程主要依靠multiprocess模块.我们先对比两段代码,看看多进程编程的优势.我们模拟了一个非常耗时的任务,计算8的20次方,为了使这个任务显得更耗时,我们还让它sleep 2秒.第一段代码是单进程计算(代码如下所示),我们按顺序执行代码,重复计算2次,并打印出总共耗时. import timeimport os d…
GIL是什么 Python的代码执行由 Python虚拟机(也叫解释器主循环,CPython版本)来控制,Python在设计之初就考虑到在解释器的主循环中,同时只有一个线程在运行.即每个CPU在任意时刻只有一个线程在解释器中运行.对 Python虚拟机访问的控制由全局解释锁GIL控制,正是这个锁来控制同一时刻只有一个线程能够运行.——在单核CPU下的多线程其实都只是并发,不是并行 . 并发与并行区别 并发:两个或多个事件在同一时间间隔发生,或者说交替做不同事件的能力,或者说不同的代码块交替执行.…
多任务才有多进程和线程: 线程是最小的执行单元,而进程由至少一个线程组成.如何调度进程和线程,完全由操作系统决定,程序自己不能决定什么时候执行,执行多长时间. 多进程和多线程的程序涉及到同步.数据共享的问题,编写起来更复杂. 子进程永远返回0,而父进程返回子进程的ID.这样做的理由是,一个父进程可以fork出很多子进程,所以,父进程要记下每个子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的ID. 1.fock()只在linux/unix下可以使用 os.fork() 2.mu…
多任务的两种方式:多进程和多线程. 如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker. 如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker. 多进程模式最大的优点就是稳定性高,缺点是创建代价大 过多的线程切换消耗资源. 计算密集型任务:使用像C语言,实现效率较高 IO密集型任务:使用脚本语言 例如python开发效率最高 异步IO,Python语言,单线程的异步编程模型称为协程 现代操作系统对IO操作已经做了巨…
了解线程和进程 进程 程序:磁盘上的可执行二进制文件,并无运行状态. 进程:就是一个正在运行的任务实例(存活在内存里). 获取当前电脑的CPU核心数: pip install psutil >>> import psutil>>> psutil.cpu_count()4 我的电脑CPU只有一个核心:我同时可以工作几个任务 核心数对应的是计算机同时可以执行的最大任务数 CPU切换执行每一个任务,100个任务:中断的执行(切换)速度非常快,人的肉眼是捕捉不到的. 并发:同一…
1.1 multiprocessing multiprocessing是多进程模块,多进程提供了任务并发性,能充分利用多核处理器.避免了GIL(全局解释锁)对资源的影响. 有以下常用类: 类 描述 Process(group=None, target=None, name=None, args=(), kwargs={}) 派生一个进程对象,然后调用start()方法启动 Pool(processes=None, initializer=None, initargs=()) 返回一个进程池对象,…
Python 界有条不成文的准则: 计算密集型任务适合多进程,IO 密集型任务适合多线程.本篇来作个比较. 通常来说多线程相对于多进程有优势,因为创建一个进程开销比较大,然而因为在 python 中有 GIL 这把大锁的存在,导致执行计算密集型任务时多线程实际只能是单线程.而且由于线程之间切换的开销导致多线程往往比实际的单线程还要慢,所以在 python 中计算密集型任务通常使用多进程,因为各个进程有各自独立的 GIL,互不干扰. 而在 IO 密集型任务中,CPU 时常处于等待状态,操作系统需要…
在我们实际编码中,会遇到一些并行的任务,因为单个任务无法最大限度的使用计算机资源.使用并行任务,可以提高代码效率,最大限度的发挥计算机的性能.python实现并行任务可以有多进程,多线程,协程等方式. 进程,线程,协程 进程 进程是程序运行的基本单位,资源分配和独立运行的基本单位. 多进程实现并行任务代码: import multiprocessing import time def test(interval): n = 5 while n > 0: time.sleep(interval)…