昨天学习完了Ng的第二课,总结如下: 过拟合:欠拟合: 参数学习算法:非参数学习算法 局部加权回归 KD tree 最小二乘 中心极限定律 感知器算法 sigmod函数 梯度下降/梯度上升 二元分类 logistic回归…
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法   模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error).通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似.计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损…
过拟合.欠拟合及其解决方案 过拟合.欠拟合的概念 权重衰减 丢弃法 模型选择.过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error).通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似.计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函…
1.涉及语句 import d2lzh1981 as d2l 数据1 : d2lzh1981 链接:https://pan.baidu.com/s/1LyaZ84Q4M75GLOO-ZPvPoA 提取码:cf8s 2.FashionMNIST2065数据集 涉及语句 batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验证集,最后一部分作为测试集(test).接下来我们开始对训练集执行训练算法,通过验证集或简单交叉验证集选择最好的模型.经过验证我们选择最终的模型,然后就可以在测试集上进行评估了.在机器学习的小数据量时代常见的做法是将所有数据三七分,就是人们常说的70%训练集集,30%测试集,如果设置有验证集,我们可…
1. 过拟合 欠拟合 过拟合:在训练集(training set)上表现好,但是在测试集上效果差,也就是说在已知的数据集合中非常好,但是在添加一些新的数据进来训练效果就会差很多,造成这样的原因是考虑影响因素太多,超出自变量的维度过于多了: 欠拟合:模型拟合不够,在训练集(training set)上表现效果差,没有充分的利用数据,预测的准确度低: 高阶多项式回归的过拟合与欠拟合 逻辑回归的过拟合与欠拟合 2. 偏差 方差 偏差:首先error=bias+variance:bias反映的是模型在样…
Q1 过拟合与欠拟合的区别是什么,什么是正则化 欠拟合指的是模型不能够再训练集上获得足够低的「训练误差」,往往由于特征维度过少,导致拟合的函数无法满足训练集,导致误差较大. 过拟合指的是模型训练误差与测试误差之间差距过大:具体来说就是模型在训练集上训练过度,导致泛化能力过差. 「所有为了减少测试误差的策略统称为正则化方法」,不过代价可能是增大训练误差. Q2 解决欠拟合的方法有哪些 降低欠拟合风险主要有以下3类方法. 加入新的特征,对于深度学习来讲就可以利用因子分解机.子编码器等. 增加模型复杂…
过拟合与欠拟合(Overfitting and underfitting) 官网示例:https://www.tensorflow.org/tutorials/keras/overfit_and_underfit主要步骤: 演示过拟合 - 创建基准模型 - 创建一个更小的模型 - 创建一个更大的模型 - 绘制训练损失和验证损失函数 策略 - 添加权重正则化 - 添加丢弃层 一些知识点 过拟合 在训练集上可以实现很高的准确率,但无法很好地泛化到测试数据(或之前未见过的数据).可能导致欠拟合的原因:…
<从锅炉工到AI专家(6)>一文中,我们把神经网络模型降维,简单的在二维空间中介绍了过拟合和欠拟合的现象和解决方法.但是因为条件所限,在该文中我们只介绍了理论,并没有实际观察现象和应对. 现在有了TensorFLow 2.0 / Keras的支持,可以非常容易的构建模型.我们可以方便的人工模拟过拟合的情形,实际来操作监控.调整模型,从而显著改善模型指标. 从图中识别过拟合和欠拟合 先借用上一篇的两组图: 先看上边的一组图,随着训练迭代次数的增加,预测的错误率迅速下降. 我们上一篇中讲,达到一定…
欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多项式的模型,对训练数据几乎完美拟合. 模型一没有很好的拟合训练数据,在训练数据以及在测试数据上都存在较大误差,这种情况称之为欠拟合(underfitting). 模型三对训练数据拟合的很不错,但是在测试数据上的准确度并不理想.这种对训练数据拟合较好,而在测试数据上准确度较低的情况称之为过拟合(ove…