keras训练实例-python实现】的更多相关文章

用keras训练模型并实时显示loss/acc曲线,(重要的事情说三遍:实时!实时!实时!)实时导出loss/acc数值(导出的方法就是实时把loss/acc等写到一个文本文件中,其他模块如前端调用时可直接读取文本文件),同时也涉及了plt画图方法 ps:以下代码基于网上的一段程序修改完成,如有侵权,请联系我哈! 上代码: from keras import Sequential, initializers, optimizers from keras.layers import Activat…
keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) 即损失函数用的是categorical_crossentropy所以,在pycharm中双击shift键,寻找该函数,会出现keras.loss模块中有该函数,进入该函数后, 原函数为: def categorical_crossent…
1. 训练 # --coding:utf--- import os import sys import glob import argparse import matplotlib.pyplot as plt from keras import __version__ from keras.applications.inception_v3 import InceptionV3, preprocess_input #from keras.applications.inception_v3_mat…
官方提供的.flow_from_directory(directory)函数可以读取并训练大规模训练数据,基本可以满足大部分需求.但是在有些场合下,需要自己读取大规模数据以及对应标签,下面提供一种方法. 步骤0:导入相关 import random import numpy as np from keras.preprocessing.image import load_img,img_to_array from keras.preprocessing.image import ImageDat…
https://cloud.tencent.com/developer/article/1010815 8.更科学地模型训练与模型保存 filepath = 'model-ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5' checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min') # fit…
1.准备环境,探索数据 import numpy as np from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt # 创建数据集 rng = np.random.RandomState(27) X = np.linspace(-3, 5, 300) rng.shuffle(X) # 将数据集随机化 y = 0.5 * X + 1 + np.random…
使用Keras构建神经网络的基本工作流程主要可以分为 4个部分.(而这个用法和思路,很像是在使用Scikit-learn中的机器学习方法) Model definition → Model compilation → Training → Evaluation and Prediction     以下为实践的步骤: 首先 人为地造一组由 y=0.5x+2 加上一些噪声而生成的数据,数据量一共有200个,其中160作为train set ,后40作为test set # # 首先 人为地造一组由…
小书匠深度学习 文章太长,放个目录: 1.优化函数的选择 2.损失函数的选择 2.2常用的损失函数 2.2自定义函数 2.1实践 2.2将损失函数自定义为网络层 3.模型的保存 3.1同时保持结构和权重 3.2模型结构的保存 3.3模型权重的保存 3.5选择网络层载入 4.训练历史的保存 4.1检测运行过程的参数 4.2保持训练过程得到的所有数据 5.陷阱:validation_split与shuffle 1.优化函数的选择 先写结论,后面再补上每个优化函数的详细解释: 如果你的数据很稀疏,那应…
最近在做一个鉴黄的项目,数据量比较大,有几百个G,一次性加入内存再去训练模青型是不现实的. 查阅资料发现keras中可以用两种方法解决,一是将数据转为tfrecord,但转换后数据大小会方法不好:另外一种就是利用generator,先一次加入所有数据的路径,然后每个batch的读入 # 读取图片函数 def get_im_cv2(paths, img_rows, img_cols, color_type=1, normalize=True): ''' 参数: paths:要读取的图片路径列表 i…
文章目录 1.改进约会网站匹配效果 1.1 准备数据:从文本文件中解析数据 1.2 分析数据:使用Matplotlib创建散点图 1.3 准备数据:归一化特征 1.4 测试算法:作为完整程序验证分类器 1.5 使用算法:构建完成可用系统 2.手写识别系统 2.1 准备数据:将图像转换为测试向量 2.2 测试算法:使用k-近邻算法识别手写数字 在上一篇文章中我们得到了基于欧式距离.多数表决规则,实现方法采用线性搜索法的k-近邻法classify0(inX, dataSet, labels, k),…