作者:Jules S. Damji 译者:足下 本文翻译自 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets ,翻译已获得原作者 Jules S. Damji 的授权. 最令开发者们高兴的事莫过于有一组 API,可以大大提高开发者们的工作效率,容易使用.非常直观并且富有表现力.Apache Spark 广受开发者们欢迎的一个重要原因也在于它那些非常容易使用的 API,可以方便地通过多种语言,如 Scala.Java…
总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.DataFrame是在1.3引入的,它包含数据与schema2部分信息,其中数据就是真正的数据,而不是一个java对象.它不容易理解,同时对java支持不好,还有一个缺点是非强类型,这会导致部分错误在运行时才会发现.优点是数据不需要加载到一个java对象,减少GC,大大优化了数据在集群间传播与本地序列化…
What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are just getting started with Apache Spark, the 2.0 release is the one to start with as the APIs have just gone through a major overhaul to improve ease-of-…
Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析.Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,其核心部分的代码只有63个Scala文件,非常轻量级. Spark 提供了与 Hadoop 相似的开源集群计算环境,但基于内存和迭代优化的设计,Spark 在某些工作负载表现更优秀. 在2014上半年,Spark开源生态系统得到了大幅增长,已成为大数据领域最活跃的开源项目之一,当下已活跃在Hortonworks.IBM.Cloudera.…
文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.DataFrame和Dataset When to use them and why 什么时候用他们,为什么? tale [tel] 传说,传言;(尤指充满惊险的)故事;坏话,谣言;〈古〉计算,总计 作者介绍 Jules S. Damji是Databricks在Apache Spark社区的布道者.他也是…
一.Spark SQL简介 Spark SQL是Spark中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将SQL查询与Spark程序无缝混合,允许您使用SQL或DataFrame API对结构化数据进行查询: 支持多种开发语言: 支持多达上百种的外部数据源,包括Hive,Avro,Parquet,ORC,JSON和JDBC等: 支持HiveQL语法以及Hive SerDes和UDF,允许你访问现有的Hive仓库: 支持标准的JDBC和ODBC连接: 支持优化器,列式存储和代码生成…
一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 DataFrame API 对结构化数据进行查询: 支持多种开发语言: 支持多达上百种的外部数据源,包括 Hive,Avro,Parquet,ORC,JSON 和 JDBC 等: 支持 HiveQL 语法以及 Hive SerDes 和 UDF,允许你访问现有的 Hive 仓库: 支持标准的 JDBC…
Apache Spark吸引广大社区开发者的一个重要原因是:Apache Spark提供极其简单.易用的APIs,支持跨多种语言(比如:Scala.Java.Python和R)来操作大数据. 本文主要讲解Apache Spark 2.0中RDD,DataFrame和Dataset三种API:它们各自适合的使用场景:它们的性能和优化:列举使用DataFrame和DataSet代替RDD的场景.文章大部分聚焦DataFrame和Dataset,因为这是Apache Spark 2.0的API统一的重…
See Apache Spark 2.0 API Improvements: RDD, DataFrame, DataSet and SQL here. Apache Spark is evolving at a rapid pace, including changes and additions to core APIs. One of the most disruptive areas of change is around the representation of data sets.…
版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   转载请标明出处:小帆的帆的专栏 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. GC的性能开销 频繁的创建和销毁对象, 势必会增加GC   import org.apache.spark.sql.SQLContext import org.…
引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用哪一种呢? RDD 从一开始 RDD 就是 Spark 提供的面向用户的主要 API.从根本上来说,一个 RDD 就是你的数据的一个不可变的分布式元素集合,在集群中跨节点分布,可以通过若干提供了转换和处理的底层 API 进行并行处理. 在正常情况下都不推荐使用 RDD 算子 在某种抽象层面来说,使用…
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但因Spark发展迅速(本文的写作时值Spark 1.6.2发布之际,并且Spark 2.0的预览版本也已发布许久),因此请随时关注Spark SQL官方文档以了解最新信息. 文中使用Scala对Spark SQL进行讲解,并且代码大多都能在spark-shell中运行,关于这点请知晓. 概述 相比于…
原文链接:http://www.jianshu.com/p/c0181667daa0 RDD.DataFrame和DataSet是容易产生混淆的概念,必须对其相互之间对比,才可以知道其中异同. RDD和DataFrame RDD-DataFrame 上图直观地体现了DataFrame和RDD的区别.左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构.而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数…
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利 2.三者都有惰性机制,在进行创建.转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,计算情况下,如果代码里面有创建.转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过,如 va…
本篇接着谈谈那些稍微复杂的API. 1)   flatMapValues:针对Pair RDD中的每个值应用一个返回迭代器的函数,然后对返回的每个元素都生成一个对应原键的键值对记录 这个方法我最开始接触时候,总是感觉很诧异,不是太理解,现在回想起来主要原因是我接触的第一个flatMapValues的例子是这样的,代码如下: val rddPair: RDD[(String, Int)] = sc.parallelize(List(("x01", 2), ("x02"…
pyspark Python3.7环境设置 及py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe解决! 环境设置 JDK: java version "1.8.0_66" Python 3.7 spark-2.3.1-bin-hadoop2.7.tgz 环境变量 export PYSPARK_PYTHON=…
Resilient Distributed Datasets Resilient Distributed Datasets (RDD) is a fundamental data structure of Spark. It is an immutable distributed collection of objects. Each dataset in RDD is divided into logical partitions, which may be computed on diffe…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文简要描述线性回归算法在Spark MLLib中的具体实现,涉及线性回归算法本身及线性回归并行处理的理论基础,然后对代码实现部分进行走读. 线性回归模型 机器学习算法是的主要目的是找到最能够对数据做出合理解释的模型,这个模型是假设函数,一步步的推导基本遵循这样的思路 假设函数 为了找到最好的假设函数,需要找到合理的评估标准,一般来说使用损失函数来做为评估标准 根据损失函数推出目标函数 现在问题转换成为如何找到目标函数的最优解,也就是目标函数的最优化…
idea显示toDF() 没有这个函数,显示错误: Error:(82, 8) value toDF is not a member of org.apache.spark.rdd.RDD[com.didichuxing.scala.BaseIndex] possible cause: maybe a semicolon is missing before `value toDF'? }).toDF() 解决: 增加一行: import sqlContext.implicits._ http:/…
题目中文:结构化流: Apache spark中,处理实时数据的声明式API Abstract with the ubiquity of real-time data, organizations need streaming systems that are scalable, easy to use, and easy to integrate into business applications. Structured Streaming is a new high-level strea…
今天小编用Python编写Spark程序报了如下异常: py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.: java.lang.IllegalArgumentException: Unsupported class file major version 55 从网上找到的解决方案是JDK版本问题,于是乎小编将Ja…
原文地址:http://blog.jobbole.com/?p=89446 我是在2013年底第一次听说Spark,当时我对Scala很感兴趣,而Spark就是使用Scala编写的.一段时间之后,我做了一个有趣的数据科学项目,它试着去 预测在泰坦尼克号上幸存.对于进一步了解Spark内容和编程来说,这被证明是一个很好的方式.对于任何有追求的.正在思考如何着手的Spark开发人员,我都非常推荐这个项目. 今天,Spark已经被很多巨头使用,包括Amazon.eBay以及Yahoo!.很多组织都在拥…
Spark is a compelling multi-purpose platform for use cases that span investigative, as well as operational, analytics. Data science is a broad church. I am a data scientist — or so I’ve been told — but what I do is actually quite different from what…
欢迎转载,转载请注明出处,徽沪一郎 概要 今天不谈Spark中什么复杂的技术实现,只稍为聊聊如何进行代码跟读.众所周知,Spark使用scala进行开发,由于scala有众多的语法糖,很多时候代码跟着跟着就觉着线索跟丢掉了,另外Spark基于Akka来进行消息交互,那如何知道谁是接收方呢? new Throwable().printStackTrace 代码跟读的时候,经常会借助于日志,针对日志中输出的每一句,我们都很想知道它们的调用者是谁.但有时苦于对spark系统的了解程度不深,或者对sca…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就standalone部署方式下的容错性问题做比较细致的分析,主要回答standalone部署方式下的包含哪些主要节点,当某一类节点出现问题时,系统是如何处理的. Standalone部署的节点组成 介绍Spark的资料中对于RDD这个概念涉及的比较多,但对于RDD如何运行起来,如何对应到进程和线程的,着墨的不是很多. 在实际的生产环境中,Spark总是会以集群的方式进行运行的,其中standalone的部署方式是所有集群方式中最为精简的一种,另外…
欢迎转载,转载请注明出处,徽沪一郎 概要 在新近发布的spark 1.0中新加了sql的模块,更为引人注意的是对hive中的hiveql也提供了良好的支持,作为一个源码分析控,了解一下spark是如何完成对hql的支持是一件非常有趣的事情. Hive简介 Hive的由来 以下部分摘自Hadoop definite guide中的Hive一章 “Hive由Facebook出品,其设计之初目的是让精通SQL技能的分析师能够对Facebook存放在HDFS上的大规模数据集进行分析和查询. Hive大大…
欢迎转载,转载请注明出处,徽沪一郎. 概要 在即将发布的spark 1.0中有一个新增的功能,即对sql的支持,也就是说可以用sql来对数据进行查询,这对于DBA来说无疑是一大福音,因为以前的知识继续生效,而无须去学什么scala或其它script. 一般来说任意一个sql子系统都需要有parser,optimizer,execution三大功能模块,在spark中这些又都是如何实现的呢,这些实现又有哪些亮点和问题?带着这些疑问,本文准备做一些比较深入的分析. SQL模块分析有几大难点,分别为…
欢迎转载,转载请注明出处,徽沪一郎. 楔子 在Spark源码走读系列之2中曾经提到Spark能以Standalone的方式来运行cluster,但没有对Application的提交与具体运行流程做详细的分析,本文就这些问题做一个比较详细的分析,并且对在standalone模式下如何实现HA进行讲解. 没有HA的Standalone运行模式 先从比较简单的说起,所谓的没有ha是指master节点没有ha. 组成cluster的两大元素即Master和Worker.slave worker可以有1到…
欢迎转载,转载请注明出处,徽沪一郎,谢谢. 在流数据的处理过程中,为了保证处理结果的可信度(不能多算,也不能漏算),需要做到对所有的输入数据有且仅有一次处理.在Spark Streaming的处理机制中,不能多算,比较容易理解.那么它又是如何作到即使数据处理结点被重启,在重启之后这些数据也会被再次处理呢? 环境搭建 为了有一个感性的认识,先运行一下简单的Spark Streaming示例.首先确认已经安装了openbsd-netcat. 运行netcat nc -lk 9999 运行spark-…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本篇主要阐述在TaskRunner中执行的task其业务逻辑是如何被调用到的,另外试图讲清楚运行着的task其输入的数据从哪获取,处理的结果返回到哪里,如何返回. 准备 spark已经安装完毕 spark运行在local mode或local-cluster mode local-cluster mode local-cluster模式也称为伪分布式,可以使用如下指令运行 MASTER=local[1,2,1024] bin/spark-shell […