简单说维特比算法 - python实现】的更多相关文章

动态规划求最短路径算法,与穷举法相比优点在于大大降低了时间复杂度; 假如从起点A到终点S的最短路径Road经过点B1,那么从起点A到B1的最短路径的终点就是B1,否则如果存在一个B2使得A到B2的距离小于B1,那么起点A到终点S的最短路径Road就不应该经过B1,而应该经过B2,这显示是矛盾的,证明了满足最优性原理; 假设从A到S需要经过N个时刻,每个时刻有M个状态(B1,B2...BM),那么我们只需要记录对应每个状态的最短路径即可,这样在任意时刻,只需要考虑非常有限的几种最短路径即可(取决于…
前言 维特比算法是隐马尔科夫问题的一个基本问题算法.维特比算法解决的问题是已知观察序列,求最可能的标注序列. 什么是维特比算法? 维特比算法尽管是基于严格的数学模型的算法,但是维特比算法毕竟是算法,因此可以感性地去理解.关于感性的认识,知乎上有维特比算法的感性认识讲解,讲的非常好,也非常仔细.在这里,我阐述一下自己的理解,如果有没有讲明白的地方,可以参考知乎上的讲解. 比如说我们知道一个人有三个精神状态,比如说正常.冷.头晕.并且我们知道身体状态转换概率 状态|健康|发烧 -|-|- 健康|0.…
维特比算法(Viterbi) 维特比算法 维特比算法shiyizhong 动态规划算法用于最可能产生观测时间序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔科夫模型中.术语“维特比路径”和“维特比算法”也被用于寻找观察结果最有可能解释的相关dongtai 规划算法.例如在统计句法分析中动态规划可以被用于发现最有可能的上下文无关的派生的字符串,有时被称为“维特比分析”. 利用动态规划寻找最短路径 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法,通常情况下应用于最优…
1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(Vitebi Algorthim). 维特比算法在隐马尔科夫模型的预测算法中已经详细介绍和Python实现过,详见以前的博客: [机器学习][隐马尔可夫模型-4]维特比算法:算法详解+示例讲解+Python实现 2.CRF的预测算法之维特比算法2.1维特比算法简介维特比算法实际使用动态规划解CRF条件…
一.前言:词性标注 二.经典维特比算法(Viterbi) 三.算法实现 四.完整代码 五.效果演示: 六.总结 一.前言:词性标注 词性标注(Part-Of-Speech tagging, POS tagging),是语料库语言学中将语料库中单词的词性按其含义和上下文内容进行标记的文本数据处理技术.词性标注可以由人工或特定算法完成,使用机器学习(machine learning)方法实现词性标注是自然语言处理(NLP)的研究内容.常见的词性标注算法包括隐马尔可夫模型(Hidden Markov…
最近思考了一下未来,结合老师的意见,还是决定挑一个方向开始研究了,虽然个人更喜欢鼓捣.深思熟虑后,结合自己的兴趣点,选择了NLP方向,感觉比纯粹的人工智能.大数据之类的方向有趣多了,个人还是不适合纯粹理论研究 :).发现图书馆一本语言处理方面的书也没有后,在京东找了一本书--<NLP汉语自然语言处理原理与实践>,到今天看了大约150页,发现还是很模糊,决定找点代码来看. 从最简单的分词开始,发现分词的库已经很多了,选择了比较轻巧的jieba来研究.看了一下GitHub的基本介绍,突然感觉:我次…
  寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states) 对于一个特殊的隐马尔科夫模型(HMM)及一个相应的观察序列,我们常常希望能找到生成此序列最可能的隐藏状态序列. 1.穷举搜索 我们使用下面这张网格图片来形象化的说明隐藏状态和观察状态之间的关系: 我们可以通过列出所有可能的隐藏状态序列并且计算对于每个组合相应的观察序列的概率来找到最可能的隐藏状态序列.最可能的隐藏状态序列是使下面这个概率最大的组合: Pr(观察序列|隐藏…
最近在学习python,用python实现几个简单的排序算法,一方面巩固一下数据结构的知识,另一方面加深一下python的简单语法. 冒泡排序算法的思路是对任意两个相邻的数据进行比较,每次将最小和最大的数据都放在数组头和尾的位置,每次比较完成后除去头.尾的数据,进行比较.python源码如下: def bubble_sort( ): str_array = raw_input("Input your numbers:") array = list(str_array) l = len(…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^).PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序.它的思想是模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事.漫无目的地在网页上跳来跳去,PageRank就是估计这个…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列 在本篇我们会讨论HMM模型最后一个问题的求解,即即给定模型和观测序列,求给定观测序列条件下,最可能出现的对应的隐藏状态序列.在阅读本篇前,建议先阅读这个系列的第一篇以熟悉HMM模型. HMM模型的解码问题最常用的算法是维特比算法,当然也有其他的算法可以求解这个问题.同时维特比算法是一个通用的求…
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单的办法就是蛮力的一个字符一个字符的匹配,但那样的时间复杂度会是O(m*n)kmp算法保证了时间复杂度为O(m+n) 基本原理 举个例子:发现x与c不同后,进行移动a与x不同,再次移动此时比较到了c与y, 于是下一步移动成了下面这样这一次的移动与前两次的移动不同,之前每次比较到上面长字符串的字符位置后…
前言 这里的前向算法与神经网络里的前向传播算法没有任何联系...这里的前向算法是自然语言处理领域隐马尔可夫模型第一个基本问题的算法. 前向算法是什么? 这里用一个海藻的例子来描述前向算法是什么.网上有关于前向算法的严格数学推导,不过感觉还是海藻的例子比较好一些.网上的例子有很多都是有问题的,在本文中也都进行了相应的修正. 状态转移矩阵 相关性矩阵 初始状态序列:Sunny(0.63),Cloudy(0.17),Rainy(0.20) 我们想要求一个观察序列{Dry, Damp, Soggy}的概…
1.简介 维特比算法是一个通用的求序列最短路径的动态规划算法,也可以用于很多其他问题,比如:文本挖掘.分词原理.既然是动态规划算法,那么就需要找到合适的局部状态,以及局部状态的递推公式.在HMM中,维特比算法定义了两个局部状态用于递推. 第一个局部状态是在时刻i隐藏状态为i所有可能的状态转移路径i1,i2.......it中的最大概率 第二个局部状态由第一个局部状态递推得到. 2.算法详解 (1)从点S出发,对于第一个状态X1的各个节点,不妨假定有n1个,计算出S到它们的距离d(S,X1i),其…
维特比算法(Viterbi algorithm)是在一个用途非常广的算法,本科学通信的时候已经听过这个算法,最近在看 HMM(Hidden Markov model) 的时候也看到了这个算法.于是决定研究一下这个算法的原理及其具体实现,如果了解动态规划的同学应该很容易了解维特比算法,因为维特比算法的核心就是动态规划. 对于 HMM 而言,其中一个重要的任务就是要找出最有可能产生其观测序列的隐含序列.一般来说,HMM问题可由下面五个元素描述: 观测序列(observations):实际观测到的现象…
隐马尔可夫模型(HMM) 原文地址:http://www.cnblogs.com/jacklu/p/7753471.html 本文结合了王晓刚老师的ENGG 5202 Pattern Recognition课程内容知识,和搜集的资料和自己理解的总结. 1 概述 隐马尔可夫模型(Hidden Markov Model,HMM)是结构最简单的贝叶斯网,这是一种著名的有向图模型,主要用于时序数据建模(语音识别.自然语言处理等数据在时域有依赖性的问题). 如果考虑t时刻数据依赖于0到t-1时间段的所有数…
总结了一下常见集中排序的算法 归并排序 归并排序也称合并排序,是分治法的典型应用.分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并. 具体的归并排序就是,将一组无序数按n/2递归分解成只有一个元素的子项,一个元素就是已经排好序的了.然后将这些有序的子元素进行合并. 合并的过程就是 对 两个已经排好序的子序列,先选取两个子序列中最小的元素进行比较,选取两个元素中最小的那个子序列并将其从子序列中 去掉添加到最终的结果集中,直到两个子序列归并完成. 代码如下: #!/usr/bin/p…
之前我们介绍过BERT+CRF来进行命名实体识别,并对其中的BERT和CRF的概念和作用做了相关的介绍,然对于CRF中的最优的标签序列的计算原理,我们只提到了维特比算法,并没有做进一步的解释,本文将对维特比算法做一个通俗的讲解,以便大家更好的理解CRF为什么能够得到最优的标签序列. 通过阅读本文你将能回答如下问题: 什么是维特比算法? 为什么说维特比算法是一种动态规划算法? 维特比算法具体怎么实现? 首先,让我们简单回顾一下BERT和CRF在命名实体识别中各自的作用: 命名实体识别中,BERT负…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 IHT(iterative hard thresholding )算法是压缩感知中一种非常重要的贪婪算法,它具有算法简单的有点,且易于实现,在实际中应用较多.本文给出了IHT算法的python和matlab代码(本文给…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 本文主要简单介绍了利用python代码实现压缩感知的过程. 压缩感知简介 [具体可以参考这篇文章] 假设一维信号x长度为N,稀疏度为K.Φ 为大小M×N矩阵(M<<N).y=Φ×x为长度M的一维测量值.压缩感知问题就…
第一篇 基本概念 01 什么是数据结构 02 什么是算法 03 应用实例-最大子列和问题 第二篇 线性结构 01 线性表及其实现 02 堆栈 03 队列 04 应用实例-多项式加法运算 05 小白专场-多项式乘法与加法运算-c语言实现 05 小白专场-多项式乘法与加法运算-python语言实现 第三篇 树(上) 01 树与树的表示 02 二叉树及存储结构 03 二叉树的遍历 04 小白专场-树的同构-c语言实现 04 小白专场-树的同构-python语言实现 第三篇 树(中) 01 二叉搜索树…
参照:https://www.cnblogs.com/wuxinyan/p/8615127.html https://www.cnblogs.com/onepixel/articles/7674659.html 一.排序算法分类: 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序. 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排 二.算法复杂度 注(…
1. 前言维特比算法针对HMM第三个问题,即解码或者预测问题,寻找最可能的隐藏状态序列: 对于一个特殊的隐马尔可夫模型(HMM)及一个相应的观察序列,找到生成此序列最可能的隐藏状态序列. 也就是说给定了HMM的模型参数和一个观测序列,计算一系列的隐状态,使得此观察序列的出现可能最大,即最大化P(隐状态 | 观测序列),给定观测序列,求最可能的对应的隐状态序列. 实际上解决此问题,在<统计学习方法>中给出了两种解法,一个是近似算法,另一个就是维特比算法(Viterbi algorithm) 2.…
声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 学习方法         条件随机场模型实际上是定义在时序数据上的对数线性模型,其学习方法包括极大似然估…
摘自:https://mp.weixin.qq.com/s/GXbFxlExDtjtQe-OPwfokA https://www.cnblogs.com/zhibei/p/9391014.html CRF(Conditional Random Field),即条件随机场.经常被用于序列标注,其中包括词性标注,分词,命名实体识别等领域. Viterbi算法,即维特比算法.是一种动态规划算法用于最可能产生观测时间序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文.隐马尔科夫模型.条件随机…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 4. 隐马尔可夫模型与序列标注 第3章的n元语法模型从词语接续的流畅度出发,为全切分词网中的二元接续打分,进而利用维特比算法求解似然概率最大的路径.这种词语级别的模型无法应对 OOV(Out of Vocabulary,即未登录词) 问题: 00V在最初的全切分阶段就已经不可能进人词网了,更何谈召回. 例如下面一句: 头上戴着束发嵌宝紫金冠,齐眉勒着二龙抢珠金抹额 加粗的就是相对…
一.排序的基本概念和分类 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作.排序算法,就是如何使得记录按照要求排列的方法. 排序的稳定性: 经过某种排序后,如果两个记录序号同等,且两者在原无序记录中的先后秩序依然保持不变,则称所使用的排序方法是稳定的,反之是不稳定的. 内排序和外排序 内排序:排序过程中,待排序的所有记录全部放在内存中 外排序:排序过程中,使用到了外部存储. 通常讨论的都是内排序. 影响内排序算法性能的三个因素: 时间复杂度:即时间性能,高效…
1.最优化与线性规划 最优化问题的三要素是决策变量.目标函数和约束条件. 线性规划(Linear programming),是研究线性约束条件下线性目标函数的极值问题的优化方法,常用于解决利用现有的资源得到最优决策的问题. 简单的线性规划问题可以用 Lingo软件求解,Matlab.Python 中也有求解线性规划问题的库函数或求解器,很容易学习和使用,并不需要用模拟退火算法.但是,由一般线性规划问题所衍生的整数规划.混合规划.0/1规划.二次规划.非线性规划.组合优化问题,则并不是调用某个库函…
1.整数规划问题 整数规划问题在工业.经济.国防.医疗等各行各业应用十分广泛,是指规划中的变量(全部或部分)限制为整数,属于离散优化问题(Discrete Optimization). 线性规划问题的最优解可能是分数或小数.但很多实际问题常常要求某些变量必须是整数解,例如:机器的台数.工作的人数或装货的车数.根据对决策变量的不同要求,整数规划又可以分为:纯整数规划.混合整数规划.0-1整数规划.混合0-1规划. 整数规划与线性规划的差别只在于增加了整数约束.初看起来似乎只要把线性规划得到的非整数…
============================ 用一个简单的例子来理解python高阶函数 ============================ 最近在用mailx发送邮件, 写法大致如下. echo 'body'|mailx -s 'title' 'a@corp.com,b@corp.com' 不知什么原因, 在一台机器上只要mailTo中包含空格, 邮件就发送不出去. 所以需要对收件人做规范化处理, 即去除空格, 去除多余的逗号. 这个处理过程使用到了map()和reduce(…