紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecord…
Tensorflow学习教程------过拟合   回归:过拟合情况 / 分类过拟合 防止过拟合的方法有三种: 1 增加数据集 2 添加正则项 3 Dropout,意思就是训练的时候隐层神经元每次随机抽取部分参与训练.部分不参与 最后对之前普通神经网络分类mnist数据集的代码进行优化,初始化权重参数的时候采用截断正态分布,偏置项加常数,采用dropout防止过拟合,加三层隐层神经元,最后的准确率达到97%以上.代码如下 # coding: utf-8 # 微信公众号:深度学习与神经网络 # G…
原文 ASP.NET MVC 5 学习教程:数据迁移之添加字段 起飞网 ASP.NET MVC 5 学习教程目录: 添加控制器 添加视图 修改视图和布局页 控制器传递数据给视图 添加模型 创建连接字符串 通过控制器访问模型的数据 生成的代码详解 使用 SQL Server LocalDB Edit方法和Edit视图详解 添加查询 Entity Framework 数据迁移之添加字段 添加验证 Details 和 Delete 方法详解 在本节中,我们将使用Entity Framework Cod…
Tensorflow学习教程------代价函数   二次代价函数(quadratic cost): 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数.为简单起见,使用一个样本为例进行说明,此时二次代价函数为: 假如我们使用梯度下降法(Gradient descent)来调整权值参数的大小,权值w和偏置b的梯度推导如下: 其中,z表示神经元的输入,σ表示激活函数.w和b的梯度跟激活函数的梯度成正比,激活函数的梯度越大,w和b的大小调整得越快,训练收敛得就越快.假设我…
一.tensorflow读取机制图解 我们必须要把数据先读入后才能进行计算,假设读入用时0.1s,计算用时0.9s,那么就意味着每过1s,GPU都会有0.1s无事可做,这就大大降低了运算的效率. 解决这个问题方法就是将读入数据和计算分别放在两个线程中,将数据读入内存的一个队列,如下图所示: 读取线程源源不断地将文件系统中的图片读入到一个内存的队列中,而负责计算的是另一个线程,计算需要数据时,直接从内存队列中取就可以了.这样就可以解决GPU因为IO而空闲的问题! 在tensorflow中,为了方便…
本文在上篇的基础上利用lenet进行多标签分类.五个分类标准,每个标准分两类.实际来说,本文所介绍的多标签分类属于多任务学习中的联合训练,具体代码如下. #coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordR…
TensorFlow 中可以通过三种方式读取数据: 一.通过feed_dict传递数据: input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.multiply(input1, input2) with tf.Session() as sess: feed_dict={input1: [[7.,2.]], input2: [[2.],[3.]]} print(sess.run(out…
#coding:utf-8 import tensorflow as tf import os def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() _, serialized_example = reader.read(filename_queue) #返回文件名和文件 feature…
大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV 文件中读取数据并在训练之前对数据进行预处理. 本节将采用哈里森和鲁宾菲尔德于 1978 年收集的波士顿房价数据集(http://lib.stat.cmu.edu/datasets/boston),该数据集包括 506 个样本场景,每个房屋含 14 个特征: CRIM:城镇人均犯罪率 ZN:占地 2…
tensorflow 学习手册 tensorflow 学习手册1:https://cloud.tencent.com/developer/section/1475687 tensorflow 学习手册2:https://data-flair.training/blogs/tensorflow-wide-and-deep-learning/ 详细的 op 数据操作 https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/con…