最短路问题之Dijkstra算法】的更多相关文章

题目: 在上一篇博客的基础上,这是另一种方法求最短路径的问题. Dijkstra(迪杰斯特拉)算法:找到最短距离已经确定的点,从它出发更新相邻顶点的最短距离.此后不再关心前面已经确定的“最短距离已经确定的点”. Dijkstra算法采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis[s] = 0).若对于顶点 s 存在能直接到达的边(s,m),则把dis[m]设为w(s, m),同…
题意: ​ 思路:单源最短路问题,Dijkstra算法搞定就可以了,因为要找出最便宜的最短路,所以需要在更新最短距离的时候加一个条件(即当最短距离相等的时候,如果该路径的花费更小,就更新最小花费)就可以了.之前自己学的最短路的水平也就仅限于模板题的水平,现在可以在条件上稍微加一些变化,做了数据结构的作业,顺便加深了自己对最短路(Dijkstra)算法的理解. 题目所给样例的示意图(数据放在了代码的后边): ​ 代码:  #include <iostream> #include <queu…
简介 最近这段时间刚好做了最短路问题的算法报告,因此对dijkstra算法也有了更深的理解,下面和大家分享一下我的学习过程. 前言 呃呃呃,听起来也没那么难,其实,真的没那么难,只要弄清楚思路就很容易了.下面正经的跟大家说下解决问题的过程. 实现过程 我们先用一个d[i]数组表示起点到点i的直接距离,然后从d[i]数组中找最小的值所对应的点,然后看点与点i之间相连的点j, 然后比较d[j]和d[i]+w[i][j](w[i][j]表示的是点i到点j之间的距离)之间的大小,然后把d[j]和d[i]…
参考 此题Dijkstra算法,一次AC.这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上:  迪科斯彻算法分解(优酷) problem link -> HDU 1874 // HDU 1874 畅通工程续 -- 单源点最短路问题 // 邻接矩阵 + Dijkstra // N 个村庄如果连通 // 最少拥有 N-1 条道路, 最多拥有 N(N-1)/2条道路 // 前提是任何两个村庄之间最多一条直达通道,但这个题目却有重复输入 /* test data 12 14 1 3…
Dijkstra又称单源最短路算法,就从一个节点到其他各点的最短路,解决的是有向图的最短路问题 此算法的特点是:从起始点为中心点向外层层扩展,直到扩展到中终点为止. 该算法的条件是所给图的所有边的权值非负. 实现的Dijkstra的过程其实也是一种贪心. 其实把下图看懂,基本Dijkstra的实现流程就差不多了 算法流程如图: 算法代码: #include<iostream> #include<cstdio> #include<cmath> #include<cs…
// 路径还原 // 求最短路,并输出最短路径 // 在单源最短路问题中我们很容易想到,既然有许多条最短路径,那将之都存储下来即可 // 但再想一下,我们是否要把所有的最短路径都求出来呢? // 实际上不需要,这里我们用一个数组来记录最短路径,之后的最短路径都是在之前最短路径上的延申 // 所以只需要一个数组,存储前一个节点即可 // 这里我们用邻接表和优先级队列来实现复杂度为o( E*log(N) )的Dijkstra算法 #include <cstdio> #include <ios…
Dijkstra算法可以解决源点到任意点的最短距离并输出最短路径 准备: 建立一个距离数组d[ n ],记录每个点到源点的距离是多少 建立一个访问数组v[ n ],记录每个点是否被访问到 建立一个祖先数组p[ n ],记录每个节点的父亲节点是什么 选择一个起始点s 执行: 1初始化:所有点到源点的距离都是无穷大 2访问源点,源点到源点的距离自然就变成0,更新与源点相邻的点的距离数组(等于边的权值) 3加入距离最小的点到已访问集合,更新与已访问集合连接的点的距离数组(=min{ 直接距离, 间接距…
Description Did you know that you can use domino bones for other things besides playing Dominoes? Take a number of dominoes and build a row by standing them on end with only a small distance in between. If you do it right, you can tip the first domin…
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知识准备: 1.表示图的数据结构 用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵.  图的邻接矩阵存储方式是用两个数组来表示图.一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息. 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 从上面可以看出,无向图的边…
最短路径是图论算法中的经典问题.图分为有向图.无向图,路径权值有正值.负值,针对不同的情况需要分别选用不同的算法.在维基上面给出了各种不同的场景应用不同的算法的基本原则:最短路问题. 针对无向图,正权值路径,采取Dijkstra算法. 如上图,是求a到b的最短路径,这里并不限定b节点,修改为到任意节点的路径,问题是完全一样的. 首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新.每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离.以这个…