首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
推荐算法之用户推荐(UserCF)和物品推荐(ItemCF)对比
】的更多相关文章
推荐算法之用户推荐(UserCF)和物品推荐(ItemCF)对比
一.定义 UserCF:推荐那些和他有共同兴趣爱好的用户喜欢的物品 ItemCF:推荐那些和他之前喜欢的物品类似的物品 根据用户推荐重点是反应和用户兴趣相似的小群体的热点,根据物品推荐着重与用户过去的历史兴趣,即: UserCF是某个群体内的物品热门程度 ItemCF是反应本人的兴趣爱好,更加个性化 二.新闻类网站采用UserCF的原因: 用户大都喜欢热门新闻,特别细粒度的个性化可忽略不计 个性化新闻推荐更强调热点,热门程度和实效性是推荐的重点,个性化重要性则可降低 ItemCF需要维护一张物品…
【笔记3】用pandas实现矩阵数据格式的推荐算法 (基于用户的协同)
原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式. 我用pandas实现相同的公式只要3行. 特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据. ''' 基于用户的协同推荐 矩阵数据 ''' import pandas as pd from io import StringIO import json #数据类型一:csv矩阵(用户-商品)(适用于小数据量) csv_txt = '''"user","Blues Traveler&qu…
【笔记4】用pandas实现条目数据格式的推荐算法 (基于用户的协同)
''' 基于用户的协同推荐 条目数据 ''' import pandas as pd from io import StringIO import json #数据类型一:条目(用户.商品.打分)(避免巨型稀疏矩阵) csv_txt = '''"Angelica","Blues Traveler",3.5 "Angelica","Broken Bells",2.0 "Angelica","Nora…
推荐算法——距离算法
本文内容 用户评分表 曼哈顿(Manhattan)距离 欧式(Euclidean)距离 余弦相似度(cos simliarity) 推荐算法以及数据挖掘算法,计算"距离"是必须的~最近想搭一个推荐系统,看了一些资料和书<写给程序员的数据挖掘指南>,此书不错,推荐大家看看,讲解得很透彻,有理论有代码,还有相关网站.看完后,你立刻就能把推荐算法应用在你的项目中~ 本文先主要说明如何计算物品或用户之间的"距离",陆续会介绍推荐算法本身~ 用户评分表 大体上,推…
(转) 基于MapReduce的ItemBase推荐算法的共现矩阵实现(一)
转自:http://zengzhaozheng.blog.51cto.com/8219051/1557054 一.概述 这2个月为公司数据挖掘系统做一些根据用户标签情况对用户的相似度进行评估,其中涉及一些推荐算法知识,在这段时间研究了一遍<推荐算法实践>和<Mahout in action>,在这里主要是根据这两本书的一些思想和自己的一些理解对分布式基于ItemBase的推荐算法进行实现.其中分两部分,第一部分是根据共现矩阵的方式来简单的推算出用户的推荐项,第二部分则是通过传统的相…
Mahout推荐算法基础
转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相近的用户定义与数量 特点: 1.易于理解 2.用户数较少时计算速度快 GenericItemBasedRecommender 算法: 1.基于item的相似度 特点: 1.item较少时就算速度更快 2.当item的外部概念易于理解和获得是非常有用 SlopeOneRecommender(itemB…
基于MapReduce的(用户、物品、内容)的协同过滤推荐算法
1.基于用户的协同过滤推荐算法 利用相似度矩阵*评分矩阵得到推荐列表 已经推荐过的置零 2.基于物品的协同过滤推荐算法 3.基于内容的推荐 算法思想:给用户推荐和他们之前喜欢的物品在内容上相似的物品 首先在物品特征建模…
基于用户的协同过滤的电影推荐算法(tensorflow)
数据集: https://grouplens.org/datasets/movielens/ ml-latest-small 协同过滤算法理论基础 https://blog.csdn.net/u012995888/article/details/79077681 相似度计算主要有三个经典算法:余弦定理相似性度量.欧氏距离相似度度量和杰卡德相似性度量.下面分别进行说明: 余弦定理相似性度量 三角形余弦定理公式:,由该公式可知角A越小,bc两边越近.当A为0度时,bc两边完全重合. 当b…
推荐召回--基于用户的协同过滤UserCF
目录 1. 前言 2. 原理 3. 数据及相似度计算 4. 根据相似度计算结果 5. 相关问题 5.1 如何提炼用户日志数据? 5.2 用户相似度计算很耗时,有什么好的方法? 5.3 有哪些改进措施? 6. 总结 1. 前言 协同过滤的思想在推荐系统中,可谓是开山鼻祖般的存在.从推荐系统最初至今,几十年的历程中,协同过滤一直都闪烁着迷人的光芒. 要说为何协同过滤这么重要,就得说说它的优点: 模型通用性强,不需要太多的领域知识 工程实现简单,可以方便的应用到产品中,而且效果还不错 协同过滤主要包括…
【笔记6】用pandas实现条目数据格式的推荐算法 (基于物品的协同)
''' 基于物品的协同推荐 矩阵数据 说明: 1.修正的余弦相似度是一种基于模型的协同过滤算法.我们前面提过,这种算法的优势之 一是扩展性好,对于大数据量而言,运算速度快.占用内存少. 2.用户的评价标准是不同的,比如喜欢一个歌手时有些人会打4分,有些打5分:不喜欢时 有人会打3分,有些则会只给1分.修正的余弦相似度计算时会将用户对物品的评分减去 用户所有评分的均值,从而解决这个问题. 如何预测用户对给定物品的打分? 一.基于用户协同 方法1:用户之间的距离/相似度(K近邻算法) 二.基于物品协…