本文转自:http://blog.csdn.net/chgm_456d/article/details/8100513 我一直对于 多尺度与多分辨率没有一个准确的概念.后来看了一些文章,其中xiaowei_cqu博客的一篇文章“[OpenCV]SIFT原理与源码分析:DoG尺度空间构造”(以下简称,xiaowei一文),写的很好,分享一下: 尺度空间(scale space)理论 要理解多尺度,首先要知道什么是尺度空间.xiaowei一文中提到,自然界中的物体呈现出不同的形态,需要不同的尺度观测…
论文提出PConv为对特征金字塔进行3D卷积,配合特定的iBN进行正则化,能够有效地融合尺度间的内在关系,另外,论文提出SEPC,使用可变形卷积来适应实际特征间对应的不规律性,保持尺度均衡.PConv和SEPC对SOTA的检测算法有显著地提升 ,并且没有带来过多的额外计算量   来源:晓飞的算法工程笔记 公众号 论文: Scale-Equalizing Pyramid Convolution for Object Detection 论文地址:https://arxiv.org/pdf/2005…
原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架,可以从零开始学目标探测器.艺术对象的对象的状态在很大程度上依赖于下架网络预培训的大规模数据分类如ImageNet,造成学习偏差由于双方的损失函数和分类和检测任务之间的类别分布的差异.对检测任务进行模型微调可以在一定程度上缓解这种偏见,但不能从根本上消除这种偏见.此外,将经过训练的模型从分类转移到差异…
原文地址:http://blog.csdn.net/xiaowei_cqu/article/details/8067881 尺度空间理论   自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形容建筑物用“米”,观测分子.原子等用“纳米”.更形象的例子比如Google地图,滑动鼠标轮可以改变观测地图的尺度,看到的地图绘制也不同:还有电影中的拉伸镜头等等…… 尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程.尺度越大图像越模糊.   为什么要讨论…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来是对过去四十年中根据不同类别的特征提取方法组织的文献的概述.然后,我们对选择的方法进行更详细的分析,这些方法对研究领域产生了特别重大的影响.最后总结并展望未来的研究方向. 1引言 在本节中,我们将讨论局部(不变)特征的本质.这个词我们的意思是什么?使用局部特征有什么好处?我们可以用它们做什么?理想的…
目录 摘要 1.引言: 2.背景 2.1 数据集 2.2评价指标 3.3D点云分割 3.1 3D语义分割 3.1.1 基于投影的方法 多视图表示 球形表示 3.1.2 基于离散的方法 稠密离散表示 稀疏的离散表示 3.1.3 混合方法 3.1.4 基于点的方法 逐点MLP方法 点卷积方法 基于RNN方法 基于图方法 3.2 实例分割 3.2.1 基于候选框的方法 3.2.2 不需要候选框的方法 3.3 部件分割 3.4 总结 4. 结论 3D点云深度学习:综述(3D点云分割部分) Deep Le…
注意:本文含有一些数学公式,如果chrome不能看见公式的话请用IE打开网站 1.特征点提取   特征点提取有以下几个步骤: a.尺度空间金字塔结构的构造 和SIFT类似,尺度空间金字塔是由不同的尺度构成,相互连续的两个尺度之间由Octave构成. 我们令t表示尺度,它们之间的计算关系如下: 图像的大小为(width, height),举个例子: width,  height scale1-octave1 (2/3)width, (2/3)height scale1-octave2 (1/2)w…
SURF分析算法 一个.整体形象     这个概念是积分图像Viola和Jones建议.随机位积分图像(i.j)的值原始图象的左上角随机点(i,j)级配相应的重点领域值的总和,其数学公式如图1所看到的: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvQ1hQMjIwNTQ1NTI1Ng==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="…
2D Pose estimation主要面临的困难:遮挡.复杂背景.光照.真实世界的复杂姿态.人的尺度不一.拍摄角度不固定等. 单人姿态估计 传统方法:基于Pictorial Structures, DPM ▪ 基于深度学习的算法包括直接回归坐标(Deep Pose)和通过热力图回归坐标(CPM, Hourlgass) 目前单人姿态估计,主流算法是基于Hourlgass各种更改结构的算法. 多人姿态估计 二维图像姿态估计基于CNN的多人姿态估计方法,通常有2个思路(Bottom-Up Appro…