目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回顾7 总结8 参考资料 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以方便地进行特征工程和模型训练工作,在<使用sklearn做单机特征工程>中,我们最后留下了一些疑问:特征处理类都有三…
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回顾7 总结8 参考资料 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以方便地进行特征工程和模型训练工作,在<使用sklearn做单机特征工程>中,我们最后留下了一些疑问:特征处理类都有三…
这里是原文 目录 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术并行处理 并行处理 2.1 整体并行处理 2.2 部分并行处理流水线处理自动化调参持久化回顾总结参考资料使用sklearn进行数据挖掘 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以方便地进行特征工程和模型训练工作,在<使用sklearn做单机特征工程>中,我们最后留下了一些疑…
原文:http://www.cnblogs.com/jasonfreak/p/5448462.html 目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术 2 并行处理 2.1 整体并行处理 2.2 部分并行处理 3 流水线处理 4 自动化调参 5 持久化 6 回顾 7 总结 8 参考资料 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以…
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回顾7 总结8 参考资料 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤.使用sklearn工具可以方便地进行特征工程和模型训练工作,在<使用sklearn做单机特征工程>中,我们最后留下了一些疑问:特征处理类都有三…
特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等.首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也非常强大! 经过前人的总结,特征工程已经形成了接近标准化的流程,如下图所示(此图来自此网友,若侵权,联系我,必删除) 1 特征来源——导入数据 在做数据分析的时候,特征…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行…
目录 1 特征工程是什么?2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺失值计算 2.5 数据变换 2.6 回顾3 特征选择 3.1 Filter 3.1.1 方差选择法 3.1.2 相关系数法 3.1.3 卡方检验 3.1.4 互信息法 3.2 Wrapper 3.2.1 递归特征消除法 3.3 Embedded 3.3.1 基于惩罚项的特征选择法 3.3.2 基于树…
目录 1 为什么要记录特征转换行为?2 有哪些特征转换的方式?3 特征转换的组合4 sklearn源码分析 4.1 一对一映射 4.2 一对多映射 4.3 多对多映射5 实践6 总结7 参考资料 1 为什么要记录特征转换行为? 使用机器学习算法和模型进行数据挖掘,有时难免事与愿违:我们依仗对业务的理解,对数据的分析,以及工作经验提出了一些特征,但是在模型训练完成后,某些特征可能“身微言轻”——我们认为相关性高的特征并不重要,这时我们便要反思这样的特征提出是否合理:某些特征甚至“南辕北辙”——我们…
这里是原文 说明:这是我用Markdown编辑的第一篇随笔 目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 无量纲化与正则化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺失值计算 2.5 数据变换 2.6 回顾 3 特征选择 3.1 Filter 3.1.1 方差选择法 3.1.2 相关系数法 3.1.3 卡方检验 3.1.4 互信息法 3.2 Wrapper 3.2.1 递归特征消除法 3.3 Emb…