学习和家庭教育 z】的更多相关文章

大家好,我是王宁. 今天能站在这里,纯属偶然. 为什么说偶然呢? 因为,南雅是个人才济济的地方,164班是一个优秀的集体. 个人认为,班级前二十几名的同学,时机适宜,谁考班上第一名都有可能. 妈妈对我说:考了第一名,不要有压力,这一次已证明了你有考第一名的实力. 以后,出现名次上下浮动都很正常,以平常心对待. 先说明一下,因为时间紧,这份发言稿是我和爸爸妈妈一起写的, 下面就孩子的学习和家庭教育的几个观点和大家探讨一下: 1.关于分数. 从小学开始,爸爸妈妈对我就是这样要求的, 只要学习态度好,…
我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统. 利用z变换得到LTI系统的单位脉冲响应 对于用差分方程描述的LTI系统而言,z变换将十分有用.有如下形式的差分方程: $\displaystyle{ y[n] = –\sum_{k=1}^{N}\left(\frac{a_k}{a_0}\right)y[n-k]+\sum_{k=0}^{M}\left(\frac{b_k}{a_0}\right)x[n-k] }$ 我们可以通过z变换得到上述式子的单位脉冲响应. 等式两边进行z变换 $…
z变换描述 $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$ 序列$x[n]$经过z变换后得到复变函数$X(z)$,该函数的收敛域为$R_x$ 线性 z变换的线性性质 $ax_1[n]+bx_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} aX_1(z)+bX_2(z),\quad ROC\ contains\ R_{x_1}\cap R_{x_2}$ 证明…
z逆变换的计算为下面的复数闭合曲线积分: $x[n] = \displaystyle{\frac{1}{2\pi j}}\oint_{C}X(z)z^{n-1}dz$ 式中$C$表示的是收敛域内的一条闭合曲线.该积分表达式可以利用复数变量理论下的柯西积分定理推导得到.不过本门课程用不上这条式子,因为在离散LTI系统分析中所遇到的典型序列和z变换,有如下更简单的z逆变换求解办法. 观察法(查表) 下面是一个常见序列的z变换表格,通过查表可以由z变换所得的函数反过来求得原序列 Sequence Tr…
z变换及其收敛域 回顾前面的文章,序列$x[n]$的傅里叶变换(实际上是DTFT,由于本书把它叫做序列的傅里叶变换,因此这里以及后面的文章也统一称DTFT为傅里叶变换)被定义为 $X(e^{j\omega}) = \displaystyle{ \sum_{n=-\infty}^{\infty}x[n]e^{-j\omega n} }$ 序列$x[n]$的z变换被定义成 $X(z) = \displaystyle{ \sum_{n=-\infty}^{\infty}x[n]z^{-n} }$ 其中…
深度学习与计算机视觉(12)_tensorflow实现基于深度学习的图像补全 原文地址:Image Completion with Deep Learning in TensorFlow by Brandon Amos 原文翻译与校对:@MOLLY && 寒小阳 (hanxiaoyang.ml@gmail.com) 时间:2017年4月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/70214565 声明:版权所有,转载请联系作…
背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进.本文主要介绍深度学习技术在文本领域的应用,文本领域大致可分为4个维度:词.句子.篇章.系统级应用. 词.分词方面,从最经典的前后向匹配到条件随机场(Conditional Random Field,CRF)序列标注,到现在Bi-LSTM+CRF模型,已经不需要设计特征,从字粒度就能做到最好的序列标注…
Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们提出了StarGAN方法,这是一个新型的可扩展的方法,能够仅使用一个单一模型就实现多领域的图像翻译.StarGAN这样的统一模型的结构允许在单个网络上同时训练带有不同领域的多个数据集.这使得StarGAN的翻译图像质量优于现有的模型,并具有将输入图像灵活地翻译到任意目标域的新能力.通过实验,验证了该…
CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training 摘要 我们提出了一个变分生成对抗网络,一个包含了与生成对抗网络结合的变分子编码器,用于合成细粒度类别的图像,比如具体某个人的脸或者某个类别的目标.我们的方法构建一张图片作为概率模型中的一个标签成分和潜在属性.通过调整输入结果生成模型的细粒度类别标签,我们能够通过随机绘制潜在属性向量中的值来生成指定类别的图像.我们方法的创新点在于两个方面: 首先是我们提出了在判别…
原文地址:https://blog.csdn.net/Sakura55/article/details/81514828 1.GAN 先来看看公式:             GAN网络主要由两个网络构成,生成网络G和辨别网络D,生成模型G的思想是将一个噪声包装成一个逼真的样本,判别模型D则需要判断送入的样本是真实的还是假的样本,即共同进步的过程,辨别模型D对样本的判别能力不断上升,生成模型G的造假能力也不断上升!              需要注意的是,生成模型G的输入是服从-1~1均匀分布的随…