首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
推荐系统系列(六):Wide&Deep理论与实践
】的更多相关文章
推荐系统系列(六):Wide&Deep理论与实践
背景 在CTR预估任务中,线性模型仍占有半壁江山.利用手工构造的交叉组合特征来使线性模型具有"记忆性",使模型记住共现频率较高的特征组合,往往也能达到一个不错的baseline,且可解释性强.但这种方式有着较为明显的缺点:首先,特征工程需要耗费太多精力.其次,因为模型是强行记住这些组合特征的,所以对于未曾出现过的特征组合,权重系数为0,无法进行泛化. 为了加强模型的泛化能力,研究者引入了DNN结构,将高维稀疏特征编码为低维稠密的Embedding vector,这种基于Embeddin…
巨经典论文!推荐系统经典模型Wide & Deep
今天我们剖析的也是推荐领域的经典论文,叫做Wide & Deep Learning for Recommender Systems.它发表于2016年,作者是Google App Store的推荐团队.这年刚好是深度学习兴起的时间.这篇文章讨论的就是如何利用深度学习模型来进行推荐系统的CTR预测,可以说是在推荐系统领域一次深度学习的成功尝试. 著名的推荐模型Wide & deep就是出自这篇论文,这个模型因为实现简单,效果不俗而在各大公司广泛应用.因此它同样也可以认为是推荐领域的必读文章之…
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004更多 分类专栏: 机器学习 机器学习荐货情报局 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010352603/article/details/80681100 计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与…
推荐系统系列(四):PNN理论与实践
背景 上一篇文章介绍了FNN [2],在FM的基础上引入了DNN对特征进行高阶组合提高模型表现.但FNN并不是完美的,针对FNN的缺点上交与UCL于2016年联合提出一种新的改进模型PNN(Product-based Neural Network). PNN同样引入了DNN对低阶特征进行组合,但与FNN不同,PNN并没有单纯使用全连接层来对低阶特征进行组合,而是设计了Product层对特征进行更细致的交叉运算.在<推荐系统系列(三):FNN理论与实践>中提到过,在不考虑激活函数的前提下,使用全…
深度学习在美团点评推荐平台排序中的应用&& wide&&deep推荐系统模型--学习笔记
写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运用 原创 2017-07-28 潘晖 美团点评技术团队 美团点评作为国内最大的生活服务平台,业务种类涉及食.住.行.玩.乐等领域,致力于让大家吃得更好,活得更好,有数亿用户以及丰富的用户行为.随着业务的飞速发展,美团点评的用户和商户数在快速增长.在这样的背景下,通过对推荐算法的优化,可以更好的给用户…
【RS】Wide & Deep Learning for Recommender Systems - 广泛和深度学习的推荐系统
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,Zakaria Haque, Lichan Hong,…
高翔《视觉SLAM十四讲》从理论到实践
目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Eigen:旋转向量和欧拉角:四元数:相似.仿射.射影变换:实践-Eigen几何模块:可视化演示: 第4讲 李群与李代数 李群李代数基础:指数与对数映射:李代数求导与扰动模型:实践-Sophus:相似变换群与李代数:小结: 第5讲 相机与图像 相机模型:图像:实践-图像的存取与访问:实践-拼接点云: 第…
深度排序模型概述(一)Wide&Deep/xDeepFM
本文记录几个在广告和推荐里面rank阶段常用的模型.广告领域机器学习问题的输入其实很大程度了影响了模型的选择,因为输入一般维度非常高,稀疏,同时包含连续性特征和离散型特征.模型即使到现在DeepFM类的方法,其实也都很简单.模型的发展主要体现于对特征的充分挖掘上,比如利用低阶和高阶特征.尝试自动学习交叉特征而非手动.尝试更精准地实现高阶特征(bounded-degree). 广告相关的领域最早大行其道的模型当属LR模型,原因就是LR模型简单,可解释性好,拓展性高,精心细调之后模型效果也会非常好.…
ARM NEON指令集优化理论与实践
ARM NEON指令集优化理论与实践 一.简介 NEON就是一种基于SIMD思想的ARM技术,相比于ARMv6或之前的架构,NEON结合了64-bit和128-bit的SIMD指令集,提供128-bit宽的向量运算(vector operations).NEON技术从ARMv7开始被采用,目前可以在ARM Cortex-A和Cortex-R系列处理器中采用.NEON在Cortex-A7.Cortex-A12.Cortex-A15处理器中被设置为默认选项,但是在其余的ARMv7 Cortex-A系…
Java 理论与实践: 流行的原子——新原子类是 java.util.concurrent 的隐藏精华(转载)
简介: 在 JDK 5.0 之前,如果不使用本机代码,就不能用 Java 语言编写无等待.无锁定的算法.在 java.util.concurrent 中添加原子变量类之后,这种情况发生了变化.请跟随并行专家 Brian Goetz 一起,了解这些新类如何使用 Java 语言开发高度可伸缩的无阻塞算法.您可以在本文的 论坛中与作者或其他读者共享您对本文的看法.(也可以通过单击文章顶部或者底部的 讨论链接来访问讨论.) 十五年前,多处理器系统是高度专用系统,要花费数十万美元(大多数具有两个到四个处理…