numpy中np.max() 和 np.maximum() 的区别】的更多相关文章

numpy科学计算包中有两个函数np.max()和np.maximum(),他们的功能截然不同.简单而言即前者作用于ndarray对象,求的是它自身的最大.而后者是一个数学上的取$\max$的效果,它是一个运算. 先说np.max() >>>A = np.array([[1,8,3,6,5],[9,2,7,4,5]]) >>>np.max(A) 9 >>>np.max(A, axis=0) array([9, 8, 7, 6, 5]) >>…
np.max(a, axis=None, out=None, keepdims=False) # 接收一个参数a # 取a 在 axis方向上的最大值 np.maximum(x, y) # 接收两个参数x,y # x,y逐位比较取最大值…
1. 参数 首先比较二者的参数部分: np.max:(a, axis=None, out=None, keepdims=False) 求序列的最值 最少接收一个参数 axis:默认为列向(也即 axis=0),axis = 1 时为行方向的最值: np.maximum:(X, Y, out=None) X 与 Y 逐位比较取其大者: 最少接收两个参数 2. 使用上 >> np.max([-2, -1, 0, 1, 2]) 2 >> np.maximum([-2, -1, 0, 1,…
1.np.max(a, axis=None, out=None, keepdims=False) 求序列的最值 最少接受一个参数 axis默认为axis=0即列向,如果axis=1即横向 ex: >> np.max([-2, -1, 0, 1, 2]) 2 2.np.maximum(X, Y, out=None) X和Y逐位进行比较,选择最大值. 最少接受两个参数 ex: >> np.maximum([-3, -2, 0, 1, 2], 0) array([0, 0, 0, 1, …
转自:https://blog.csdn.net/lanchunhui/article/details/52700895…
1.ndarray.max([int axis]) 函数功能:求ndarray中指定维度的最大值,默认求所有值的最大值. axis=0:求各column的最大值 axis=1:求各row的最大值…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题.在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程.查阅资料的过程中找到了一个极其简单的解决方式,也学到了不少东西.先把代码给出. import numpy as np # A = np.mat('1 2 3;2 -1 1;3 0 -1') A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]]) b = np.array([9, 8,…
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的merge() import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.c_[a,b] print(np.r_[a,b]) print(c) print(np.c_[c,a]) 结果如下: [1 2 3 4 5 6…
numpy中的np.round()取整的功能和注意 功能 np.round() 是对浮点数取整的一个函数,一般的形式为 np.round(a, b),其中a为待取整的浮点数,b为保留的小数点的位数 注意 当小数部分是0.5时,np.round(),"去奇存偶",或者说 "4舍6入5凑偶" 与一般理解的四舍五入不同,在误差理论中:当整数部分是偶数,小数部分是0.5时,向下取整,最后结果为偶数:当整数部分是奇数,小数部分是0.5时,则向上取整,最后结果为偶数.这样得到的…
np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgrid 与np.ogrid的目的都是为创建一个格栅区域,而mgrid返回的是相同维度的数组,ogrid仅返回本维度的数组,而创建格栅区域可以i这样理解:如果要确定一点(x,y),则对于mgrid返回值而言,首先取出所有数组的第x行,然后再第x行取出第y个数字,因此,mgrid的第一个数组x,每行都是相…
array 和 asarray 都可以将 结构数据 转化为 ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 1.输入为列表时 import numpy as np a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) """ 运行结果: [[1, 2, 3], […
>> import numpy as np >> help(np.repeat) >> help(np.tile) 二者执行的是均是复制操作: np.repeat:复制的是多维数组的每一个元素: np.tile:复制的是多维数组本身: 1. np.repeat >> x = np.arange(1, 5).reshape(2, 2) >> np.repeat(x, 2) array([1, 1, 2, 2, 3, 3, 4, 4]) # 对数组中…
1. np.asarray -- numpy 风格的类型转换 从已有多维数组创建新的多维数组,数据类型可重新设置 >> B = np.asarray(A, dtype='int32') 2. np.array() vs np.asarray 源码之前,了无秘密. 两者的区别和联系,铜通过查看源码,一目了然: def asarray(a, dtype=None, order=None): return array(a, dtype, copy=False, order=order) 两者主要的区…
内置min()函数 numpy中的min()函数:…
weekdays.pyimport numpy as npfrom datetime import datetimedef datestr2num(s): return datetime.strptime(s.decode('ascii'), "%d-%m-%Y").date().weekday() dates, open, high, low, close=np.loadtxt('data.csv', dtype=float, delimiter=',', usecols=(1, 3…
numpy 中的reshape,flatten,ravel 数据平展,多维数组变成一维数组 import numpy as np 使用array对象 arr1=np.arange(12).reshape(3,4) print(arr1) print(type(arr1)) [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] <class 'numpy.ndarray'> flatten 展平 a=arr1.flatten() # 默认参数order=C,按照行进行展平:o…
numpy提供的数组功能比较常用,NumPy中维数被称为轴,轴数称为秩. import numpy as np 比如a = np.array([[1, 5, 3], [4, 2, 6]]) a.min()返回的就是a中所有元素的最小值 a.min(0)返回的就是a的每列最小值 a.min(1)返回的是a的每行最小值 光这么说可能有点犯迷糊,下面举一个三维的例子 b = np.array([[[1, 2, 3], [4, 5, 6]], [[2, 3, 4], [3, 65, 1]], [[1,…
# 导包 import numpy as np sum np.random.seed(10) L = np.random.random(100) sum(L) np.sum(L) min np.min(L) max np.max(L) 多维度聚合 X = np.arange(16).reshape(4,-1) """ array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) "&…
Numpy 精通面向数组编程和思维方式是成为Python科学计算大牛的一大关键步骤.——<利用Python进行数据分析> Numpy(Numerical Python)是Python科学计算的基础包.具有以下功能: 快速高效的多维数组对象ndarray ndarray表示的是N维数组对象. ndarray是一个通用的同构数据多维容器,也就是说,其中的元素必须都是相同类型的.每个数组里面都有一个shape和一个dtype shape表示各个维度大小的元组dtype表示数组数据类型 除非是显示的设…
numpy中的快速的元素级数组函数 一元(unary)ufunc 对于数组中的每一个元素,都将元素代入函数,将得到的结果放回到原来的位置 >>> import numpy as np >>> arr=np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.sqrt(arr)# 开方 array([0. , 1. , 1.41421356, 1.7320508…
nan:not a number inf:infinity;正无穷 numpy中的nan和inf都是float类型     t!=t 返回bool类型的数组(矩阵) np.count_nonzero() 返回的是数组中的非0元素个数:true的个数. np.isnan() 返回bool类型的数组. 那么问题来了,在一组数据中单纯的把nan替换为0,合适么?会带来什么样的影响? 比如,全部替换为0后,替换之前的平均值如果大于0,替换之后的均值肯定会变小,所以更一般的方式是把缺失的数值替换为均值(中…
原文地址 前言 况下加速Python中的操作运行时.适用于快速数值运算的一个选项是NumPy,它当之无愧地将自己称为使用Python进行科学计算的基本软件包. 当然,很少有人将50微秒(百万分之五十秒)的东西归类为"慢".然而,计算机可能会有所不同.运行50微秒(50微秒)的运行时属于微执行领域,可以松散地定义为运行时间在1微秒和1毫秒之间的运算. 为什么速度很重要?微观性能值得监控的原因是运行时的小差异会随着重复的函数调用而放大:增量50μs的开销,重复超过100万次函数调用,转换为…
摘要:NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票的收盘价的分析,了解了某些Numpy的一些函数.通常实际中,某公司的股价被另外一家公司的股价紧紧跟随,它们可能是同领域的竞争对手,也可能是同一公司下的不同的子公司.可能因两家公司经营的业务类型相同,面临同样的挑战,需要相同的原料和资源,并且争夺同类型的客户. 实际中,有很多这样的例子,如果要检验一下…
 在python&numpy中切片(slice) 上文说到了,词频的统计在数据挖掘中使用的频率很高,而切片的操作同样是如此.在从文本文件或数据库中读取数据后,需要对数据进行预处理的操作.此时就需要对数据进行变换,切片,来生成自己需要的数据形式. 对于一维数组来说,python原生的list和numpy的array的切片操作都是相同的.无非是记住一个规则arr_name[start: end: step],就可以了. 实例: 下面是几个特殊的例子: [:]表示复制源列表 负的index表示,从后往…
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法. Meshgrid函数的基本用法 在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度.可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格.用法: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x)与[X,Y]=meshg…
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针对二维矩阵操作axis,当axis为0时,计算方向时列,当axis为1时计算方向为行. 但是这样的描述并不能让我们真正理解axis的含义.下面我一个三维Array,来带领大家深入理解axis 2.实战讲解 >>> import numpy as np >>> arrays…
https://www.cnblogs.com/td15980891505/p/6198036.html numpy.random模块中提供啦大量的随机数相关的函数. 1 numpy中产生随机数的方法 1)rand() 产生[0,1]的浮点随机数,括号里面的参数可以指定产生数组的形状 2)randn() 产生标准正太分布随机数,参数含义与random相同 3)randint() 产生指定范围的随机数,最后一个参数是元祖,他确定数组的形状 1 2 3 4 5 6 7 8 9 10 11 12 im…
import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.7720009033229526 a=np.random.uniform(60,80)#用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.#如果a > b,则生成的随机数n: a <= n <= b.如果 a <b, 则 b <= n <= a.b=np.random.unifor…
1.创建: import numpy as np arr=np.array([1,2,3]) print(arr,arr.ndim) list=[1,2,3] arr=np.array(list) 2.增加 arr=numpy.array([1,2,3]) #arr中新增数据元素4 ad=numpy.array([4]) print(arr.ndim) arr.resize(len(arr),1) arr_ad=np.vstack((arr,ad)) print(arr_ad) arr_re=a…