HDU5514——容斥原理&&gcd】的更多相关文章

题目 链接 有n只青蛙,有m块石头,编号为0-m-1,第i只青蛙每次可以跳$a_i$, 刚开始都在0,问,青蛙总共可以跳到的石头之和为多少.其中$t≤20$,$1≤n≤10^4$,$1≤m≤10^9$,$1≤a_i≤10^9$. 分析 根据裴蜀定理知,对于一个有n个点的环,每个循环节的长度为n/gcd(n, k),k为每次走的步数.所以青蛙可以达到的石头编号肯定是$gcd(m,a_i)$的倍数,相当于真正步长为$gcd(m,a_i)$. 当然要容斥一下,不就是奇加偶减吗,枚举所有的项有$2^n$…
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/article/details/5787722 题意 a,b,c,d,k五个数,a与c可看做恒为1,求在a到b中选一个数x,c到d中选一个数y,使得gcd(x,y)等于k,求x和y有多少对. 首先可以想到选取的必是k的倍数,假设是x和y倍,则x和y一定是互质的在,那么就变成了求1到b/k和1到d/k的之…
推导过程 : 组合数+容斥原理+gcd 正确做法是暴力的一种优化,ans=所有情况 - 平行坐标轴的三点共线 - 斜线三点共线 如果快速求斜线三点共线: 首先要知道一个结论,对于点(a,b) (x,y)连成的线段而言(其中a>x,b>y), 在它们中间有gcd(a-x,b-x)-1个整点,因此基本的思路就是枚举两个点, 然后第3个点就是gcd(a-x,b-x)-1种可能了 至于为什么第3个点一定要在中间,是为了保证不重不漏,只用两边的点统计中间的点, 然而这样复杂度太高,于是可以发现,可以将这…
GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4272    Accepted Submission(s): 1492 Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y)…
F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1695 Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest c…
题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y)=k的对数,则将b/k,d/k,然后求GCD(x,y)=1的对数即可.假设b/k >= d/k ;对于1到b/k中的某个数s,如果s<=d/k,则因为会有(x,y)和(y,x)这种会重复的情况,所以这时候的对数就是比s小的与s互质的数的个数,即s的欧拉函数.至于重复的情况是指:在d/k中可能有大于…
题意: 给出一个n行m列的点阵,求共有多少条非水平非竖直线至少经过其中两点. 分析: 首先说紫书上的思路,编程较简单且容易理解.由于对称性,所以只统计“\”这种线型的,最后乘2即是答案. 枚举斜线包围盒的大小,如果盒子的长宽ab互质,则是可以的.这种盒子共有(m-a)(n-b)个,但要减去其中重复的.如果有一个长宽为2a和2b的大盒子,则计数右下角的小盒子的同时,左上角的小盒子会重复,所以要减去重复的盒子的个数c = max(0, m-2a) * max(0, n-2b) 最后gcd(a, b)…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, y)有多少组,不考虑顺序. 思路:a = c = 1简化了问题,原问题可以转化为在[1, b/k]和[1, d/k]这两个区间各取一个数,组成的数对是互质的数量,不考虑顺序.我们让d > b,我们枚举区间[1, d/k]的数i作为二元组的第二位,因为不考虑顺序我们考虑第一位的值时,只用考虑小于i的情…
http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y)满足GCD(x,y)=k?  //(x,y)和(y,x)视作同一个 题解:既然是要x,y的最大公约数为k,那说明x/k和y/k是互质的,只需在[1,b/k]和[1,d/k]范围内找到适合的x,y即可. 特判:当k等于0时,显然没有符合的,输出结果0: #include<iostream> #in…
Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the t…